Ray, Sibdas’s team published research in Journal of Molecular Structure in 2015-06-05 | CAS: 21343-04-4

Journal of Molecular Structure published new progress about Amides Role: PRP (Properties), SPN (Synthetic Preparation), PREP (Preparation). 21343-04-4 belongs to class imidazoles-derivatives, name is 5-Amino-1-methyl-1H-imidazole-4-carboxamide, and the molecular formula is C5H8N4O, Computed Properties of 21343-04-4.

Ray, Sibdas published the artcileStudies on the π-π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides, Computed Properties of 21343-04-4, the main research area is aminoalkylimidazolecarboxamide Pi Pi stacking distance X ray hydrogen bond.

Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; mols. with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for ‘π-π stacking stabilization energy vs. π-π stacking distance’ which have got similarity with the ‘Morse potential energy diagram for a diat. mol.’ and this affords to find out a min. π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for ‘π-π stacking stabilization energy vs. π-π stacking distance’ of a pair of syn-parallel imidazole units is shown to have an exponential nature.

Journal of Molecular Structure published new progress about Amides Role: PRP (Properties), SPN (Synthetic Preparation), PREP (Preparation). 21343-04-4 belongs to class imidazoles-derivatives, name is 5-Amino-1-methyl-1H-imidazole-4-carboxamide, and the molecular formula is C5H8N4O, Computed Properties of 21343-04-4.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Brown, Tom’s team published research in Journal of the Chemical Society, Perkin Transactions 5: Organic and Bio-Organic Chemistry in 1979-12-31 | CAS: 21343-04-4

Journal of the Chemical Society, Perkin Transactions 5: Organic and Bio-Organic Chemistry published new progress about Nucleosides Role: SPN (Synthetic Preparation), PREP (Preparation). 21343-04-4 belongs to class imidazoles-derivatives, name is 5-Amino-1-methyl-1H-imidazole-4-carboxamide, and the molecular formula is C5H8N4O, Recommanded Product: 5-Amino-1-methyl-1H-imidazole-4-carboxamide.

Brown, Tom published the artcilePurines, pyrimidines, and imidazoles. Part 51. New syntheses of some 5-alkyl- and 5-dialkylaminoimidazoles. 3-Alkylimidazolium nucleosides and 3-alkylpurines, Recommanded Product: 5-Amino-1-methyl-1H-imidazole-4-carboxamide, the main research area is imidazolium nucleoside; purine alkyl; Dimroth rearrangement methylaminoimidazolecarboxlate.

The α- and β-anomers of the imidazolium nucleoside I (R = H, R12 = CMe2, R2 = Et) and the β-anomers of I (R = H, R12 = CMe2, R2 = CH2Ph; R = R1 = Ac, R2 = CH2Ph) were prepared by methylation of the corresponding nucleosides with MeI. Their reactions with acids and bases were examined The imidazolecarboxlates II (R = OEt, R1 = H, R2 = Me, CH2Ph) were prepared from EtOC(:NH)CH2CO2Et by substitution with R2NHMe followed by reaction with diazotized PhNH2, reductive formylation, and cyclization. Catalytic hydrogenation of II (R = OEt, R1 = H, R2 = CH2Ph) gave II (R = OEt, R1 = R2 = H) which was converted into 3-methylhypoxanthine ( III; R = H), 3-methylguanine (III; R = NH2), and, by Dimroth rearrangement with aqueous NH3, to II (R = NH2, R1 = Me, R2 = H).

Journal of the Chemical Society, Perkin Transactions 5: Organic and Bio-Organic Chemistry published new progress about Nucleosides Role: SPN (Synthetic Preparation), PREP (Preparation). 21343-04-4 belongs to class imidazoles-derivatives, name is 5-Amino-1-methyl-1H-imidazole-4-carboxamide, and the molecular formula is C5H8N4O, Recommanded Product: 5-Amino-1-methyl-1H-imidazole-4-carboxamide.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Desbois, Nicolas’s team published research in Heterocycles in 2005-05-01 | CAS: 82090-52-6

Heterocycles published new progress about Alkaloids Role: BSU (Biological Study, Unclassified), SPN (Synthetic Preparation), THU (Therapeutic Use), BIOL (Biological Study), PREP (Preparation), USES (Uses) (pyrido[4,3-b]carbazole). 82090-52-6 belongs to class imidazoles-derivatives, name is Imidazo[1,2-a]pyridin-2-ylmethanol, and the molecular formula is C8H8N2O, Name: Imidazo[1,2-a]pyridin-2-ylmethanol.

Desbois, Nicolas published the artcileSynthesis of polyfused heterocycle derivatives containing the dipyridoimidazole core by Friedlaender’s reaction: Access to analogs of ellipticine, Name: Imidazo[1,2-a]pyridin-2-ylmethanol, the main research area is oligodeoxynucleotide intercalation triazacyclopentafluorene triazabenzofluorene dipyridoimidazole triazaindenophenanthrene; tetraazacyclopentafluorene preparation intercalation oligodeoxynucleotide; tetraazabenzofluorene preparation intercalation oligodeoxynucleotide; aminoformylimidazopyridine Friedlander reaction aldehyde ketone; aminoimidazopyridinecarboxaldehyde Friedlander cyclocondensation aldehyde ketone; ellipticine analog preparation intercalation oligodeoxynucleotide.

Reaction of 3-amino-2-formylimidazo[1,2-a]pyridine (I) with various aldehydes and ketones by Friedlaender’s methodol. afforded an entry to dipyridoimidazoles II (R1 = Me, R2 = H; R1 = H, R2 = Me, Ph; R1 = CO2Et, R2 = Me), tri(tetra)azacyclopenta[b]fluorenes III (X3 = Y3 = CH2; X3 = CH2, Y3 = NCO2Et; X3 = NCO2Et, Y3 = CH2), tri(tetra)azabenzo[b]fluorenes IV (X4 = Y4 = CH2; X4 = C:O, Y4 = CH2; X4 = CH2, Y4 = NH·HCl, CHCO2Et) and triazaindeno[2,1-b]phenanthrene V. Intercalation with a synthetic oligodeoxynucleotide, d(CGATCG)2, was examined

Heterocycles published new progress about Alkaloids Role: BSU (Biological Study, Unclassified), SPN (Synthetic Preparation), THU (Therapeutic Use), BIOL (Biological Study), PREP (Preparation), USES (Uses) (pyrido[4,3-b]carbazole). 82090-52-6 belongs to class imidazoles-derivatives, name is Imidazo[1,2-a]pyridin-2-ylmethanol, and the molecular formula is C8H8N2O, Name: Imidazo[1,2-a]pyridin-2-ylmethanol.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Stock, Nicholas S.’s team published research in Journal of Medicinal Chemistry in 2011-12-08 | CAS: 82090-52-6

Journal of Medicinal Chemistry published new progress about Blood serum albumins Role: BSU (Biological Study, Unclassified), BIOL (Biological Study) (human serum albumin – FLAP binding equilibrium). 82090-52-6 belongs to class imidazoles-derivatives, name is Imidazo[1,2-a]pyridin-2-ylmethanol, and the molecular formula is C8H8N2O, Name: Imidazo[1,2-a]pyridin-2-ylmethanol.

Stock, Nicholas S. published the artcile5-Lipoxygenase-Activating Protein (FLAP) Inhibitors. Part 4: Development of 3-[3-tert-Butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic Acid (AM803), a Potent, Oral, Once Daily FLAP Inhibitor, Name: Imidazo[1,2-a]pyridin-2-ylmethanol, the main research area is lipoxygenase activating protein inhibitor AM803 GSK2190915 antiasthmatic; FLAP inhibitor SAR.

The potent 5-lipoxygenase-activating protein (FLAP) inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid 11cc (I) is described (AM803, now GSK2190915). Building upon AM103, SAR studies centering around the pyridine moiety led to the discovery of compounds that exhibit significantly increased potency in a human whole blood assay measuring LTB4 inhibition with longer drug preincubation times (15 min vs 5 h). Further studies identified 11cc with a potency of 2.9 nM in FLAP binding, an IC50 of 76 nM for inhibition of LTB4 in human blood (5 h incubation) and excellent preclin. toxicol. and pharmacokinetics in rat and dog. 11Cc also demonstrated an extended pharmacodynamic effect in a rodent bronchoalveolar lavage (BAL) model. This compound has successfully completed phase 1 clin. studies in healthy volunteers and is currently undergoing phase 2 trials in asthmatic patients.

Journal of Medicinal Chemistry published new progress about Blood serum albumins Role: BSU (Biological Study, Unclassified), BIOL (Biological Study) (human serum albumin – FLAP binding equilibrium). 82090-52-6 belongs to class imidazoles-derivatives, name is Imidazo[1,2-a]pyridin-2-ylmethanol, and the molecular formula is C8H8N2O, Name: Imidazo[1,2-a]pyridin-2-ylmethanol.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Panzica, Raymond P.’s team published research in Nucleosides & Nucleotides in 1999-12-31 | CAS: 21343-04-4

Nucleosides & Nucleotides published new progress about Reaction kinetics. 21343-04-4 belongs to class imidazoles-derivatives, name is 5-Amino-1-methyl-1H-imidazole-4-carboxamide, and the molecular formula is C5H8N4O, Application In Synthesis of 21343-04-4.

Panzica, Raymond P. published the artcileAnalogs of AICA- and iso-AICA ribosides and their methylated base counterparts, Application In Synthesis of 21343-04-4, the main research area is imidazole thiocarboxamide selenocarboxamide riboside preparation kinetics; AICA riboside analog preparation reaction kinetics.

A mild, convenient and efficient synthesis has been developed for imidazole-4-thiocarboxamide and imidazole-5-thiocarboxamide ribosides and the analogous selenocarboxamides. This methodol., i.e., DMF saturated with H2S or H2Se, also converts the corresponding N-methylated bases to the corresponding amides. The imidazole-4(5)-selenocarboxamides were shown to be sensitive to base (pH 11) and were easily converted back to their cyano precursors. The kinetics of these reactions were determined and they indicate that the C5 amides were more reactive than their C4 analogs.

Nucleosides & Nucleotides published new progress about Reaction kinetics. 21343-04-4 belongs to class imidazoles-derivatives, name is 5-Amino-1-methyl-1H-imidazole-4-carboxamide, and the molecular formula is C5H8N4O, Application In Synthesis of 21343-04-4.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Zheng, Meifang team published research in BMC gastroenterology in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Product Details of C4H6N2S

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Product Details of C4H6N2S.

Zheng, Meifang;Cui, Shiyuan;Zhang, Wei;Brigstock, David R;Gao, Runping research published 《 Graves’ disease overlapping with chronic hepatitis B and methimazole-induced liver injury and autoimmune hepatitis: a case report.》, the research content is summarized as follows. BACKGROUND: Liver injury related to Graves’ Disease (GD) includes hepatotoxicity of thyroid hormone excess, drug-induced liver injury, and changes resulting from concomitant liver disease. Methimazole (MMI) has been shown to induce several patterns of liver injury. However, the diagnosis and treatment of autoimmune hepatitis (AIH) overlapping with either GD or chronic hepatitis B are challenging. CASE PRESENTATION: A 35-year-old man from China presented with a two-year history of GD and a 10-day history of progressive jaundice. He had taken MMI for two months and discontinuing treatment due to liver toxicity 1 year ago and for another 6 days 20 days prior to hospitalization. The patient was diagnosed with GD overlapping with chronic hepatitis B and MMI-induced liver injury with early stage of acute-on-chronic liver failure on admission. However, the elevated aminotransferase and bilirubin levels could not be controlled after correction of liver failure and effective control of HBV replication and hyperthyroidism by daily oral entecavir and one-time oral administration of 131-iodine. The patient underwent liver biopsy on the 43rd day of hospitalization, showing HBsAg expression on the membrane of hepatocytes and typical histopathological characteristics of AIH. He was finally diagnosed with GD overlapping with chronic hepatitis B and MMI-induced liver injury and AIH. The elevated aminotransferase and bilirubin completely returned to normal by 3-month glucocorticoid therapy and continuous entecavir treatment and there was no recurrence during a 6-month follow-up, suggesting that AIH in this patient is different from classical AIH or GD-associated AIH. CONCLUSIONS: GD together with AIH is a complex and difficult subject. It needs to be clarified whether MMI or HBV can act as a trigger for AIH in this patient.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Product Details of C4H6N2S

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Zhang, Bing team published research in Journal of Antibiotics in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., SDS of cas: 60-56-0

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. SDS of cas: 60-56-0.

Zhang, Bing;Yang, Yan;Yuan, Jin;Chen, Lidan;Tong, Huasheng;Huang, Taoyang;Shi, Lei;Jiang, Zhihui research published 《 Methimazole and α-lipoic acid as metallo-β-lactamases inhibitors》, the research content is summarized as follows. The emergence of bacterial resistance poses a serious threat to public health. One of the most important resistance mechanisms against β-lactam antibiotics is the production of metallo-β-lactamases (MBLs). In this study, α-lipoic acid (LA) and methimazole (MMI), which have been used in clin. practice as non-antibacterial drugs and as a supplement, were chosen to explore their potential to be metallo-β-lactamases inhibitors (MBLIs). Enzyme inhibition assays showed that LA and MMI had moderate inhibitory activity against NDM-1 but no activity against VIM-2 and IMP-7. Antibacterial assays to determine synergy, demonstrated that the combination of LA or MMI with meropenem (MER) reduced the MIC value of MER against NDM-1 producing E. coli 16 times and 4 times, resp., lower than that of MER alone. The fractional inhibitory concentration index (FICI) values were calculated to be less than 0.5, indicating that both LA and MMI had synergistic antibacterial effects with MER against all three MBLs expressing E. coli strains. The time-kill studies also suggested that LA and MMI were effective in restoring the antibacterial effect of MER. These findings revealed that LA and MMI are potential carbapenem enhancers, and provide a starting point for the development of potent MBLIs.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., SDS of cas: 60-56-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Zhang, Cheng team published research in ACS Applied Nano Materials in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Electric Literature of 60-56-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Electric Literature of 60-56-0.

Zhang, Cheng;Shao, Congying;Wang, Junsheng;Li, Ziwei;Liang, Mengna;Wang, Yongxiang;Liu, Dan;Lu, Shun research published 《 Multifunctional Fluorescent Copper Nanoclusters for Ag+ Sensing, Anticounterfeiting, and Blue/White Light-Emitting Diodes》, the research content is summarized as follows. Copper nanoclusters (CuNCs) with bright blue-emitting fluorescence have been synthesized via a simple one-pot process using 2-mercapto-1-methylimidazole (MMI) as a stabilizer. The as-prepared MMI-CuNCs exhibited a high quantum yield of 19.2%, a long luminescence lifetime of 10.57μs, and excellent photostability. Significantly, the fluorescence intensities of MMI-CuNCs were effectively quenched with addition of Ag+ ions, and the MMI-stabilized CuNCs were developed as a sensitive fluorescent nanoprobe for the label-free determination of silver ions for the first time. The fluorescence sensor provided a fast linear response toward Ag+ in the range of 0.025-50μM, with a detection limit of 6.7 nM. The fluorescence quenching mechanism was ascribed to an agglomeration-induced effect and static quenching. A fluorescence sensing platform was successfully applied for Ag+ detection in human serum samples with good accuracy and high reproducibility, signifying the practical applicability of the assay. Addnl., MMI-CuNCs displayed good solid-state blue emission and are suitable for security ink applications. The MMI-CuNCs were utilized as a color conversion layer to construct blue- and white-light-emitting diodes (LEDs) with excellent white light properties by a facile combination of MMI-CuNCs and UV LED chips. This result facilitates multiple functions of MMI-CuNCs in the application of label-free sensors, anticounterfeiting, and optical devices.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Electric Literature of 60-56-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Yang, Hongpeng team published research in ChemistrySelect in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Application In Synthesis of 60-56-0

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Application In Synthesis of 60-56-0.

Yang, Hongpeng;Chen, Lei;Zhang, Shouguo;Wang, Gang;Chen, Tingting;Xu, Jing;Peng, Tao;Wang, Lin;Hu, Liming research published 《 Synthesis and Application of a Thiol Photolabile Protecting Group》, the research content is summarized as follows. A photolabile protecting group (PLPG) for thiol that can be rapidly photolyzed by irradiation at 365 nm to release thiol groups within 100 s. was successfully designed and synthesized. The photolytic reaction has mild conditions and avoids acid cleavage, leading to good yields with no side reactions as validated by HPLC. The PLPG has good acid/alkali tolerance.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Application In Synthesis of 60-56-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Yang, Mengxue team published research in Frontiers in cellular and infection microbiology in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Synthetic Route of 60-56-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Synthetic Route of 60-56-0.

Yang, Mengxue;Zheng, Xiaodi;Wu, Yueyue;Zhang, Rui;Yang, Qian;Yu, Zhiyan;Liu, Jun;Zha, Bingbing;Gong, Qihai;Yang, Bo;Sun, Bowen;Zeng, Miao research published 《 Preliminary Observation of the Changes in the Intestinal Flora of Patients With Graves’ Disease Before and After Methimazole Treatment.》, the research content is summarized as follows. Immune dysfunction caused by environmental factors plays an important role in the development of Graves’ disease (GD), and environmental factors are closely related to the intestinal flora. Our previous study showed significant changes in the intestinal flora in GD patients compared with healthy volunteers. This study analyzed the relationships between changes in the intestinal flora, thyroid function and relevant thyroid antibodies in GD patients before and after methimazole treatment. The subjects were divided into the UGD group (18 newly diagnosed GD patients), the TGD group (10 GD patients with normal or approximately normal thyroid function after methimazole treatment) and the NC group (11 healthy volunteers). Their fresh stool samples were sent for 16S rRNA gene amplification and Illumina platform sequencing. The correlations of the relative abundance of Bifidobacterium with the levels of TRAb, TgAb and TPOAb in the NC group and the UGD group were analyzed. A total of 1,562,445 high-quality sequences were obtained. In the UGD group, the abundances of Bifidobacterium and Collinsella were higher than that in the NC group; Bacteroides abundance in the TGD group was higher than that in the NC group, while Prevotella and Dialister abundances were lower than that in the NC group; Prevotella and Collinsella abundances in the UGD group were higher than that in the TGD group. The predominant abundance distribution of Bifidobacteriaceae in the UGD group at the family level was superior to that in the NC group. The abundance of Bifidobacterium was positively correlated with the levels of TRAb, TgAb, and TPOAb. The biological diversity of the intestinal flora was reduced in GD patients. After methimazole treatment, the composition of the intestinal flora was significantly altered. The change in Bifidobacterium abundance was positively correlated with TRAb, TgAb and TPOAb, suggesting that it might be related to the immune mechanism of GD. The results of this study may deepen our understanding of the pathogenesis of GD and provide a new idea for the treatment of GD.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Synthetic Route of 60-56-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem