In 2019,Angewandte Chemie, International Edition included an article by Hedges, Jason B.; Ryan, Katherine S.. Category: imidazoles-derivatives. The article was titled 《In vitro reconstitution of the biosynthetic pathway to the nitroimidazole antibiotic azomycin》. The information in the text is summarized as follows:
Nitroimidazoles are one of the most effective ways to treat anaerobic bacterial infections. Synthetic nitroimidazoles are inspired by the structure of azomycin, isolated from Streptomyces eurocidicus in 1953. Despite its foundational role, no biosynthetic gene cluster for azomycin has been found. Guided by bioinformatics, we identified a cryptic biosynthetic gene cluster in Streptomyces cattleya and then carried out in vitro reconstitution to deduce the enzymic steps in the pathway linking L-arginine to azomycin. The gene cluster we discovered is widely distributed among soil-dwelling actinobacteria and proteobacteria, suggesting that azomycin and related nitroimidazoles may play important ecol. roles. Our work sets the stage for development of biocatalytic approaches to generate azomycin and related nitroimidazoles. In the experiment, the researchers used many compounds, for example, 1H-Imidazol-2-amine(cas: 7720-39-0Category: imidazoles-derivatives)
1H-Imidazol-2-amine(cas: 7720-39-0) belongs to anime. To avoid the problem of multiple alkylation, methods have been devised for “blocking” substitution so that only one alkyl group is introduced. The Gabriel synthesis is one such method; it utilizes phthalimide, C6H4(CO)2NH, whose one acidic hydrogen atom has been removed upon the addition of a base such as KOH to form a salt.Category: imidazoles-derivatives
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem