Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Reference of 3034-50-2.
Pariente Cohen, Natalie;Lo Presti, Eliana;Dell’Acqua, Simone;Jantz, Thomas;Shimon, Linda J. W.;Levy, Naomi;Nassir, Molhm;Elbaz, Lior;Casella, Luigi;Fischer, Bilha research published 《 Aminomethylene-Phosphonate Analogue as a Cu(II) Chelator: Characterization and Application as an Inhibitor of Oxidation Induced by the Cu(II)-Prion Peptide Complex》, the research content is summarized as follows. Recently, the authors reported on aminomethylene-phosphonate (AMP) analogs, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, the authors explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, the authors first characterized the Cu(II) complex with AMP-(Im)2 by UV-visible spectroscopy and electrochem. measurements that indicated the high chem. and electrochem. stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 mol. yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K’ = 15.55), and log β’ = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by x-ray crystallog., indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed 1-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, resp. Indeed, 4 is a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. CD data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.
3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Reference of 3034-50-2
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem