Wang, Yu-Ting team published research in Journal of Applied Polymer Science in 2021 | 3034-50-2

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Recommanded Product: Imidazole-4-carbaldehyde

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Recommanded Product: Imidazole-4-carbaldehyde.

Wang, Yu-Ting;An, Lian-Cai;Zhang, Yun-Qin;Zhang, Xin-Kun;Gao, Zhu-Feng;Zhang, Ying-Hui research published 《 Improving iodine adsorption performance of porous organic polymers by rational decoration with nitrogen heterocycle》, the research content is summarized as follows. Four kinds of porous aminal-linked organic polymers (PAOPs) were synthesized via one-step condensation between cheap melamine and resp. aldehydes decorated with different nitrogen heterocycle, to evaluate the influence of nitrogen heterocycle on the adsorption performance of target polymer toward iodine. Though having the smallest surface area of 209.9 m2/g, PAOP-4 decorated with pyridine group exhibits an adsorption capacity of 108 wt% (iodine/adsorbent weight%), surpassing other three PAOPs with Brunauer-Emmett-Teller area varying from 305.8 to 533.0 m2/g. Based on Raman spectral analyses, the characteristic band of I3 and I5 was used to evaluate the electronic interaction between iodine and the nitrogen heterocycle, giving an order of pyridine > tetrazole > pyrazole > imidazole. This manifests the vital role of chem. interaction playing in the iodine adsorption by PAOP-4, which is much helpful for designing high-performance organic adsorbent toward iodine.

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Recommanded Product: Imidazole-4-carbaldehyde

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Whitely, Chelsi team published research in Tetrahedron Letters in 2022 | 3034-50-2

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Name: Imidazole-4-carbaldehyde

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Name: Imidazole-4-carbaldehyde.

Whitely, Chelsi;Li, Yangmei research published 《 One-pot high-throughput synthesis of N3-substituted 5-arylidene-2-thiohydantoin amides and acids》, the research content is summarized as follows. A one-pot high-throughput solid-phase method for the synthesis of N3-substituted 5-arylidene-2-thiohydantoin amide and acid has been developed. A tandem ring-closure and ring-open pathway is proposed as the mechanism of forming the two products.

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Name: Imidazole-4-carbaldehyde

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Xue-Zhi team published research in Advanced Optical Materials in 2021 | 3034-50-2

Computed Properties of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Computed Properties of 3034-50-2.

Wang, Xue-Zhi;Sun, Meng-Ying;Huang, Zhijin;Xie, Mo;Huang, Ruishan;Lu, Huihui;Zhao, Zujin;Zhou, Xiao-Ping;Li, Dan research published 《 Turn-On Circularly Polarized Luminescence in Metal-Organic Frameworks》, the research content is summarized as follows. The fabrication of circularly polarized luminescence (CPL) active materials by self-assembly is still in its challenge. In this work, a family of homochiral metal-organic frameworks (MOFs) and metal-organic cages (MOCs) are constructed by solvothermal subcomponent self-assembly. These MOFs feature an eta topol. with trifold helical chains, while the MOCs adopt a cubic cage structure. The chiral ligands show two distinct types of conformations: “opened” and “closed” in MOFs and MOCs, resp. Although homochiral MOFs and MOCs show similar spectra of CD and photoluminescence with similar quantum yields and lifetimes, the MOFs yield clear CPL signals and the CPL of MOCs are silent. The turn-on CPL in MOFs achieved by tuning the conformation of ligands and controlling self-assembly provides a new approach for development of CPL-active MOF materials.

Computed Properties of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Yanyan team published research in Journal of Agricultural and Food Chemistry in 2019 | 3034-50-2

Application In Synthesis of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Application In Synthesis of 3034-50-2.

Wang, Yanyan;Xu, Fangzhou;Luo, Dexia;Guo, Shengxin;He, Feng;Dai, Ali;Song, Baoan;Wu, Jian research published 《 Synthesis of Anthranilic Diamide Derivatives Containing Moieties of Trifluoromethylpyridine and Hydrazone as Potential Anti-Viral Agents for Plants》, the research content is summarized as follows. A series of novel anthranilic diamide derivatives I (R = 4-Cl-2-Me, 4,6-di-F, 6-Me, etc.; Ar = thiophen-2-yl, 5-bromopyridin-2-yl, iso-Pr, etc.) containing moieties of trifluoromethylpyridine and hydrazone was synthesized and evaluated in vivo for their activities against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Few compounds had the curative activity over 65% against TMV at the concentration of 500 μg/mL, which were significantly higher than those of ningnanmycin (55.0%) and ribavirin (37.9%). Notably, the curative activity of compound I (R = 4-Cl-2-Me, Ar = 5-Me-thien-2-yl) was up to 79.5%, with the EC50 value of 75.9 μg/mL, whereas the EC50 value of ningnanmycin was 362.4 μg/mL and pot experiments also further demonstrated the significantly curative effect of the compound Meanwhile, few compounds displayed more protective activities on TMV than that of ningnanmycin. Moreover few, compounds showed inactivation activity similar to ningnanmycin at 500 μg/mL, and the EC50 value of I (R = 4-Cl-2-Me, Ar = 2-CH3C6H4) (41.5 μg/mL) was lower than ningnanmycin (50.0 μg/mL). The findings of TEM indicated that the synthesized compounds exhibited strong and significant binding affinity to TMV coat protein (CP) and could obstruct the self-assembly and increment of TMV particles. Microscale thermophoresis (MST) studies on TMV-CP and CMV CP revealed that some of the active compounds, particularly I (R = 4-Cl-2-Me, Ar = 5-Me-thien-2-yl) exhibited a strong binding capability to TMV-CP or CMV-CP.

Application In Synthesis of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Turkoglu, Gulsen team published research in Organic & Biomolecular Chemistry in 2020 | 3034-50-2

Related Products of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Related Products of 3034-50-2.

Turkoglu, Gulsen;Kayadibi Koygun, Gozde;Yurt, Mediha Nur Zafer;Demirok, Naime;Erbas-Cakmak, Sundus research published 《 Self-reporting heavy atom-free photodynamic therapy agents》, the research content is summarized as follows. Two novel, self-reporting distyryl BODIPY-based photodynamic therapy agents functionalized with singlet oxygen responsive imidazole and tertiary amine moieties are developed. Heavy atom-free photosensitizers are demonstrated to have efficient photodynamic action in MCF7 cells. The fluorescence intensity of the photosensitizers is shown to be reduced as a result of 1O2 generation without any significant change in photodynamic activity.

Related Products of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Huan team published research in Inorganic Chemistry in 2020 | 3034-50-2

Quality Control of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Quality Control of 3034-50-2.

Wang, Huan;Wong, Alison;Lewis, Luke C.;Nemeth, Genevieve R.;Jordan, Veronica Clavijo;Bacon, Jeffrey W.;Caravan, Peter;Shafaat, Hannah S.;Gale, Eric M. research published 《 Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties》, the research content is summarized as follows. Complexes of Fe3+ engage in rich aqueous solution speciation chem. in which discrete mols. can react with solvent water to form multinuclear μ-oxo and μ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and μ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chem. to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, ESR spectroscopy, and X-ray crystallog. measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiol., resulting in substantial observed relaxivity change. Controlling Fe3+ μ-oxo bridging interactions through rational ligand design and in response to local chem. environment offers a robust mechanism for biochem. responsive MR signal modulation. We demonstrate how pH- and concentration-dependent equilibration between monomeric and μ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chem. to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of S = 5/2 monomer vs antiferromagnetically coupled dimer speciation.

Quality Control of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Tanaka, Tsubasa team published research in Bulletin of the Chemical Society of Japan in 2020 | 3034-50-2

Application of C4H4N2O, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Application of C4H4N2O.

Tanaka, Tsubasa;Sunatsuki, Yukinari;Suzuki, Takayoshi research published 《 Iron(II) Complexes Having Dinuclear Mesocate or Octanuclear Bicapped Trigonal Prism Structures Dependent on the Rigidity of Bis(bidentate) Schiff Base Ligands Containing Imidazole Groups》, the research content is summarized as follows. Dinuclear complex, [Fe2(H2L1,Me)3](ClO4)4 (1Me, H2L1,Me = N,N’-(1,3-phenylene)bis(1-(5-methyl-1H-imidazol-4-yl)methanimine)), and octanuclear complexes, [Fe8(H2L2,Me)12](ClO4)16 (2HClO4: H2L2,Me = N,N’-(1,3-phenylenebis(methylene))bis(1-(1H-imidazol-4-yl)methanimine)) and [Fe8(H2L2,Me)12](X)16 (2MeX: H2L2,Me = N,N’-(1,3-phenylenebis(methylene))bis(1-(5-methyl-1H-imidazol-4-yl)methanimine), X = ClO4, BF4), were synthesized. It was revealed by x-ray anal. that 1Me has a dinuclear mesocate structure. However, 2HClO4 and 2MeX have novel octanuclear bicapped trigonal prism structures with six Fe(II) sites having the meridional configuration on vertexes and two Fe(II) sites having the facial one on the centers of each triangular base. Magnetic susceptibility studies indicated that these dinuclear and octanuclear complexes show gradual spin-crossover (SCO) behavior.

Application of C4H4N2O, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Tanaka, Tsubasa team published research in Inorganica Chimica Acta in 2020 | 3034-50-2

Recommanded Product: Imidazole-4-carbaldehyde, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Recommanded Product: Imidazole-4-carbaldehyde.

Tanaka, Tsubasa;Sunatsuki, Yukinari;Suzuki, Takayoshi research published 《 Synthesis and magnetic properties of tetrahedral tetranuclear iron(II) complexes with bis(bidentate)-type Schiff bases containing imidazole groups》, the research content is summarized as follows. Two new tetranuclear iron(II) complexes, [Fe4(H2LH)6](ClO4)8 (1ClO4: H2LH = N,N’-bis(imidazole-4-ylmethylidene)-1.4-diaminobenzene) and [Fe4(H2LMe)6](BF4)8 (2BF4: H2LMe = N,N’-bis(5-methylimidazole-4-ylmethylidene)-1.4-diaminobenzene), were synthesized from Fe(ClO4 or BF4)2·6H2O, 1.4-diaminobenzene and 4-formylimidazole or 5-methyl-4-formylimidazole. X-ray anal. revealed that these complexes have a tetrahedral structure with four iron(II) ions at the apexes and the bridging bis(bidentate) ligands on the edges. The internal space of the tetrahedron was filled with the phenylene segments of the bridging ligands. Magnetic susceptibility studies indicated that both 1ClO4 and 2BF4 showed gradual but incomplete spin-crossover (SCO) behavior, because the densely packed tetrahedral structure could prevent the contraction of the Fe-N bonds on the high-spin to low-spin transition.

Recommanded Product: Imidazole-4-carbaldehyde, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Trobe, Melanie team published research in European Journal of Organic Chemistry in 2022 | 3034-50-2

Product Details of C4H4N2O, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Product Details of C4H4N2O.

Trobe, Melanie;Schreiner, Till;Vareka, Martin;Grimm, Sebastian;Wolfl, Bernhard;Breinbauer, Rolf research published 《 A modular synthesis of teraryl-based α-helix mimetics, part 5: A complete set of pyridine boronic acid pinacol esters featuring side chains of proteinogenic amino acids》, the research content is summarized as follows. Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using pyridine containing boronic acid building blocks to increase the water solubility Following our initial publication in which we have introduced the methodol. in combination with sequential Pd-catalyzed cross-coupling for teraryl assembly, we can now report a complete set of pyridine based boronic acid building blocks decorated with side chains of all proteinogenic amino acids relevant for PPI (Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, Val) to complement the core fragment set. For a representative set of teraryls we have studied the influence of the pyridine rings on the solubility of the assembled oligoarenes.

Product Details of C4H4N2O, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Sigalov, Mark V. team published research in Tetrahedron in 2021 | 3034-50-2

Recommanded Product: Imidazole-4-carbaldehyde, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Recommanded Product: Imidazole-4-carbaldehyde.

Sigalov, Mark V.;Shainyan, Bagrat A.;Chipanina, Nina N.;Oznobikhina, Larisa P.;Sterkhova, Irina V. research published 《 Photoisomerization and hydrogen-bonding-induced association in 2-(1H-diazol-2-ylmethylene)indane-1-ones and 2-(1H-diazol-2-ylmethylene)-1H-indene-1,3(2H)-diones.》, the research content is summarized as follows. The products of condensation of 2-imidazolyl-, 4-imidazolyl-, 3-pyrazolylcarbaldehydes with indan-1-one 1-3 and 1H-indene-1,3(2H)-dione 4-6 were synthesized. The E-isomers of 1-3 undergo UV-induced isomerization to the Z-isomers stabilized by intramol. NH···O=C hydrogen bond with the pyrrolic-type NH group. Theor. anal. of all isomers, tautomers and rotamers showed that the degree of conjugation between the diazolyl group and the C=O group decreases in the order 1 > 2>3. Spectroscopic study of 1-6 performed before and after UV irradiation allowed to conclude on the nature of the associates formed. A remarkably different association of the 2- and 4-imidazolyl derivatives 4 and 5 was revealed by X-ray and confirmed theor., leading to the formation of the chelate rings closed by NH···O=C hydrogen bond in 4 or by N-H …Npyridinic hydrogen bond in 5. Both chelate rings include two bifurcate H-bonds with bifurcation on the carbonyl oxygen and the pyrrolic NH hydrogen.

Recommanded Product: Imidazole-4-carbaldehyde, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem