These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 4-Bromo-1H-imidazole, its application will become more common.
Application of 2302-25-2,Some common heterocyclic compound, 2302-25-2, name is 4-Bromo-1H-imidazole, molecular formula is C3H3BrN2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.
Step 1: To a stirred mixture of DMF (15 mL) and NaH (60% dispersion in mineral oil, 539 mg, 21 mmol) at 0C under argon was added 4-bromo-1H-imidazole (3 g, 20 mmol) in one portion. The mixture was stirred for 5 min at 0C. A solution of 2-(trimethylsilyl)ethoxymethyl chloride (4.3 mL, 24 mmol) in DMF (3 mL) was added dropwise. Afterstirring at 0 C for 1 h, the mixture was warmed slowly to rt and stirred for 6 h. The mixture was then partitioned betweenEtOAc (100 mL) and water (50 mL). The EtOAc layer was separated and washed with brine, dried over Na2SO4, filtered,and the filtrate was concentrated under reduced pressure. The residue was purified via silica gel flash chromatography(eluting with a gradient of 100% hexanes to 100% EtOAc) to afford a regioisomeric mixture of 4-bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazole and 5-bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazole as an oil (2.9 g, 53%).LCMS (ESI) m/z 277 and 279 (M+H)+. Step 1: To a mixture of the regioisomers 4-bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazole and 5-bromo,-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazole (643 mg, 2.3 mmol) from Step 1 of Example 32, acetamide(275 mg, 5.0 mmol), and Cs2CO3 (1.5 g, 5 mmol) in 1,4-dioxane (7 mL) was added N,N?-dimethylethylenediamine (500mL, 5 mmol). Argon was bubbled into the mixture for 5 min followed by the addition of CuI (221 mg, 1.1 mmol). Argonwas bubbled into the mixture for an additional 5 min. Then the reaction vessel was sealed and the mixture was heatedat 100 C for 15 h. The mixture was cooled to rt, then partitioned between EtOAc (100 mL) and water (50 mL). TheEtOAc layer was separated, washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure.The residue was purified by silica gel flash chromatography eluting with a gradient of 100% hexanes to 100% EtOAc toafford a mixture of regioisomers N-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazol-4-yl)acetamide and N-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazol-5-yl)acetamide (170 mg, 29%) as an oil. LCMS (ESI) m/z 256 (M+H)+.
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 4-Bromo-1H-imidazole, its application will become more common.
Reference:
Patent; Ambit Biosciences Corporation; HADD, Michael J.; HOCKER, Michael D.; HOLLADAY, Mark W.; LIU, Gang; ROWBOTTOM, Martin W.; XU, Shimin; (299 pag.)EP2766359; (2016); B1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem