Ketsomboon, Nutthanicha team published research in Tetrahedron Letters in 2021 | 1739-84-0

Reference of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Reference of 1739-84-0.

Ketsomboon, Nutthanicha;Saeeng, Rungnapha;Srisook, Klaokwan;Sirion, Uthaiwan research published 《 Convenient synthesis of long alkyl-chain triazolylglycosides using ionic liquid as dual promoter-solvent: Readily access to non-ionic triazolylglycoside surfactants for evaluation of cytotoxic activity》, the research content is summarized as follows. A convenient method for the one-pot synthesis of long alkyl-chain triazolylglycosides using ionic liquid as dual promoter and solvent is described via a sequential one-pot two-step glycosidation-CuAAc click reaction. The reaction was carried out using com. available substrates, including glycosyl bromides, sodium azide and various long alkyl-chain alkynes to achieve the corresponding products in moderate to high yields. Furthermore, this approach was successfully applied for the preparation of non-ionic mono-catenary triazolylglycoside surfactants in excellent yields through simple deacetylation. Subsequently, these surfactants were further evaluated for their cytotoxic activity.

Reference of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Komarova, Anastasia O. team published research in Green Chemistry in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Electric Literature of 1739-84-0

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Electric Literature of 1739-84-0.

Komarova, Anastasia O.;Dick, Graham R.;Luterbacher, Jeremy S. research published 《 Diformylxylose as a new polar aprotic solvent produced from renewable biomass》, the research content is summarized as follows. Demand for sustainable polar aprotic solvents is increasing due to their unique solubilizing properties and the toxicity of conventional analogs, which are facing pressure from extensive safety legislation. Polar aprotic solvents are particularly difficult to produce renewably because polar mols. that lack hydroxyl groups are rarely found in abundance in the natural world. Here, we explore the use of diformylxylose (DFX), a xylose-derived mol. that can be produced in a single step from lignocellulosic biomass, as a novel polar aprotic bio-based solvent. We notably demonstrate that diformylxylose shows a similar performance to conventional polar aprotic solvents (DMF, NMP, DMSO) in alkylation, cross-coupling (Heck), and hydrogenation reactions. We also demonstrate its straightforward production from com. xylose and show that it is non-mutagenic, according to the Ames test. Renewable DFX appears to be a greener alternative to common polar aprotic solvents that are considered problematic for industry.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Electric Literature of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Koshy, David M. team published research in Journal of the American Chemical Society in 2021 | 1739-84-0

HPLC of Formula: 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. HPLC of Formula: 1739-84-0.

Koshy, David M.;Akhade, Sneha A.;Shugar, Adam;Abiose, Kabir;Shi, Jingwei;Liang, Siwei;Oakdale, James S.;Weitzner, Stephen E.;Varley, Joel B.;Duoss, Eric B.;Baker, Sarah E.;Hahn, Christopher;Bao, Zhenan;Jaramillo, Thomas F. research published 《 Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H2 Evolution Rates during Electrochemical CO2 Reduction》, the research content is summarized as follows. Bridging polymer design with catalyst surface science is a promising direction for tuning and optimizing electrochem. reactors that could impact long-term goals in energy and sustainability. Particularly, the interaction between inorganic catalyst surfaces and organic-based ionomers provides an avenue to both steer reaction selectivity and promote activity. Here, we studied the role of imidazolium-based ionomers for electrocatalytic CO2 reduction to CO (CO2R) on Ag surfaces and found that they produce no effect on CO2R activity yet strongly promote the competing hydrogen evolution reaction (HER). By examining the dependence of HER and CO2R rates on concentrations of CO2 and HCO3, we developed a kinetic model that attributes HER promotion to intrinsic promotion of HCO3 reduction by imidazolium ionomers. We also show that varying the ionomer structure by changing substituents on the imidazolium ring modulates the HER promotion. This ionomer-structure dependence was analyzed via Taft steric parameters and d. functional theory calculations, which suggest that steric bulk from functionalities on the imidazolium ring reduces access of the ionomer to both HCO3 and the Ag surface, thus limiting the promotional effect. Our results help develop design rules for ionomer-catalyst interactions in CO2R and motivate further work into precisely uncovering the interplay between primary and secondary coordination in determining electrocatalytic behavior.

HPLC of Formula: 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Krasovskiy, V. G. team published research in Russian Chemical Bulletin in 2021 | 1739-84-0

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Recommanded Product: 1,2-Dimethyl-1H-imidazole.

Krasovskiy, V. G.;Kapustin, G. I.;Gorbatsevich, O. B.;Glukhov, L. M.;Chernikova, E. A.;Koroteev, A. A.;Kustov, L. M. research published 《 Dicationic disiloxane ionic liquids as heat transfer agents in vacuo》, the research content is summarized as follows. Abstract: Bis(trifluoromethylsulfonyl)imidic dicationic liquids containing a disiloxane linker between the imidazole cations have been synthesized. Their thermal stability was estimated, and their m.ps., viscosity, and volatility in vacuo were measured. The opportunity to use these ionic liquids as heat transfer agents in a dynamic vacuum has been shown.

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Jin, Chongyue team published research on Chemical Engineering Journal (Amsterdam, Netherlands) in 2020 | 1739-84-0

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Product Details of C5H8N2.

Jin, Chongyue;Wang, Min;Li, Zhilin;Kang, Jin;Zhao, Yan;Han, Jin;Wu, Zengmin research published 《 Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance》, the research content is summarized as follows. In this study, to improve peroxymonosulfate (PMS)-mediated visible-light photocatalytic performance of g-C3N4 in antibiotics degradation and elucidate its mechanism, an ultrathin Co3O4 nanomeshes/g-C3N4 nanosheets 2D Z-scheme heterojunction composite (x% Co3O4/g-C3N4) was successfully prepared calcining the mixtures of MOF-Co ultrathin nanosheets and g-C3N4. This unique nanomeshes/nanosheets structure with large SSA (153.92 m2/g) possessed an abundance of accessible active sites and large area intimate interfaces between Co3O4 and g-C3N4, thus remarkably promoting the separation and transport of charge carriers. The as-prepared optimal 10% Co3O4/g-C3N4 composites exhibited excellent degradation efficiency toward tetracycline (TC) under visible light irradiation and were further enhanced with the addition of PMS. The mechanism of the enhanced TC degradation in Co3O4/g-C3N4/Vis/PMS system was investigated in detail based on the characterization of the catalysts, TC degradation efficiency assessment, ESR measurements, and reactive oxygen species (ROSs) quenching results. The TC degradation pathway was proposed based on the intermediates identified by the gas chromatog.-mass spectrometer (GC-MS) measurements. This study provides a facile and promising path for the remediation of contaminated water via PMS mediated photocatalysis over highly active g-C3N4-based catalysts.

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Jin, Saimeng team published research on RSC Advances in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Related Products of 1739-84-0.

Jin, Saimeng;Byrne, Fergal P.;Clark, James H.;McElroy, Con Robert;Quinn, Alex;Sherwood, James;Hunt, Andrew J. research published 《 3-Methoxybutan-2-one as a sustainable bio-based alternative to chlorinated solvents》, the research content is summarized as follows. Methylation of acetoin with di-Me carbonate was performed in a sustainable one-step process, with improved process mass intensity (PMI) and atom economy compared to previously published methods. The resulting product, 3-methoxybutan-2-one (MO) was successfully evaluated as a bio-based solvent, while both Kamlet-Taft solvatochromic parameters and Hansen solubility parameters demonstrate its potential viability in the substitution of chlorinated solvents. MO exhibited a low peroxide forming potential and a neg. Ames mutagenicity test and was successfully used as a solvent in a Friedel-Crafts acylation (79% yield compared to 77% in dichloromethane) and for N-alkylations. MO is a renewable oxygenated solvent, with the potential ability to substitute carcinogenic halogenated solvents in some applications.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Hu, Xiao team published research on Materials Advances in 2022 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Computed Properties of 1739-84-0.

Hu, Xiao;Zhang, Runan;Wemyss, Alan M.;Elbanna, Mohamed A.;Heeley, Ellen L.;Arafa, Mustafa;Bowen, Chris;Wang, Shifeng;Geng, Xueyu;Wan, Chaoying research published 《 Tuning triboelectric and energy harvesting properties of dielectric elastomers via dynamic ionic crosslinks》, the research content is summarized as follows. The bromination of poly(isobutylene-co-isoprene) rubber introduces a small amount of bromide groups (1-2 mol%) to the elastomer backbone and creates new opportunities for functionalisation, as compared to other saturated and diene elastomers. In this work, three types of nucleophile reagents: namely pyridine, triphenylphosphine and imidazoles bearing four types of side groups of Me, Et, hydroxyl or vinyl group were introduced to brominated poly(isobutylene-co-isoprene) rubber (BIIR) through nucleophile substitution with the bromine via solid-state rubber compounding and curing processes. The resulted ionic aggregates act as phys. crosslinks and their size and d. directly affected the mech. reinforcement, self-healing and dynamic mech. properties of the elastomers. The smaller and polar imidazolyl/bromine pairs led to the highest reinforcement beyond even the sulfur-cured BIIR counterparts. The 1-Et imidazole (EIm) modified BIIR showed the highest tensile strength of 17.01 ± 1.89 MPa and elongation at break of 1402 ± 69% with self-healing efficiency of 63.7%, after being treated at 140°C for 30 min. In addition, the inclusion of the ionic clusters enhanced the relative permittivity of the elastomer, thereby enhancing the energy conversion efficiencies. The nucleophile substitution reaction via conventional solid-state rubber compounding processes provides a facile crosslinking and reinforcement strategy for halogen-containing polymers. In addition, the dynamic ionic crosslinking networks spontaneously benefit electromech. and self-healing properties of the dielec. elastomers.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Hua, Derun team published research on Catalysts in 2021 | 1739-84-0

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole based anticancer drug find applications in cancer chemotherapy. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Recommanded Product: 1,2-Dimethyl-1H-imidazole.

Hua, Derun;Ding, Hao;Liu, Yunfeng;Li, Jian;Han, Baojun research published 《 Dehydration of Xylose to Furfural over Imidazolium-Based Ionic Liquid with Phase Separation》, the research content is summarized as follows. An environmentally friendly catalyst and task-specific ionic liquid (IL), 1-(4-sulfonic acid) butyl-3-cetyl-2-Me imidazolium hydrogen sulfate, was applied to the dehydration of xylose to furfural. Its structure was determined by FT-IR, 1H NMR technologies. The solubility of IL in water changed with the temperature, and had the advantages of homogeneous and heterogeneous catalysts. At the given conditions, xylose conversion of 95.3% and furfural yield of 67.5% were achieved over IL.

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Huang, Lingyun team published research on Macromolecular Rapid Communications in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., SDS of cas: 1739-84-0

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. SDS of cas: 1739-84-0.

Huang, Lingyun;Yang, Yinxin;Niu, Zhen;Wu, Ruiyao;Fan, Weifeng;Dai, Quanquan;He, Jianyun;Bai, Chenxi research published 《 Catalyst-Free Vitrimer Cross-Linked by Biomass-Derived Compounds with Mechanical Robustness, Reprocessability, and Multishape Memory Effects》, the research content is summarized as follows. Vitrimerization of thermoset polymers plays an important role in addressing resource recovery and reuse. Vitrimer elastomers with good mech. properties often require well-designed crosslinking agents or fillers, but this increases processing complexity or reduces vitrimer dynamic properties. In this report, a simple green strategy to build a strong vitrimer elastomer is designed. Com. available epoxidized natural rubber (ENR) is crosslinked with biomass-derived D-Fructose 1,6-bisphosphoric acid to get a vitrimer elastomer crosslinked by β-hydroxy phosphate ester bonds and has abundant hydrogen bonds. Hydrogen bonds can preferentially break and dissipate energy under external forces, which makes the sample robust. The topol. network can be reformed at high temperatures through the dynamic exchange of β-hydroxy phosphate ester bonds, which gives the material malleability and recyclability. In addition, through the strategy of combining reprocessing and welding, multiple shape memory effects can be achieved in one postprocessing step. Considering that a variety of com. available epoxy polymers are easily available, it is believed that this strategy can be a simple and versatile way to enable com. epoxy polymers to achieve green crosslinking through biomass crosslink agents, which results in robust and recyclable vitrimers based on β-hydroxy phosphate bonds.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., SDS of cas: 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Huang, Lingyun team published research on Polymer in 2020 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Related Products of 1739-84-0.

Huang, Lingyun;Yang, Yinxin;Wu, Ruiyao;Fan, Weifeng;Dai, Quanquan;He, Jianyun;Bai, Chenxi research published 《 Boron nitride and hyperbranched polyamide assembled recyclable polyisoprene vitrimer with robust mechanical properties, high thermal conductivity and remoldability》, the research content is summarized as follows. Rubber has huge potential applications for thermal management due to its outstanding softness and elasticity, however, its low thermal conductivity limits its applications, and the vulcanized rubber also has the problem of being unrecoverable. Therefore, the development of recyclable rubber-based material with good mech. properties, high thermal conductivity remains a challenge. Herein, the dynamic β-hydroxyl ester bonds were introduced into the composites of the epoxidized boron nitride (EBN) and the epoxidized polyisoprene (EPI) matrix via carboxyl-terminated hyperbranched polyamide (HBPA), forming dynamic covalently crosslinking rubber-based vitrimers. The covalent-bonds-mediated interface reduces the phonon scattering and enables the material to have a relatively high thermal conductivity of 0.51 W/mK under a loading of 50 phr (parts per one hundred parts of rubber) of EBN. In addition, the introduction of exchangeable bonds brings the materials the capability to change the network topol. at high temperatures, exhibiting excellent recyclability and remoldability.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem