Liu, Yu-Yao team published research in ACS Sustainable Chemistry & Engineering in 2021 | 1739-84-0

Related Products of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Related Products of 1739-84-0.

Liu, Yu-Yao;Liu, Gan-Lin;Li, Yi-Dong;Weng, Yunxuan;Zeng, Jian-Bing research published 《 Biobased High-Performance Epoxy Vitrimer with UV Shielding for Recyclable Carbon Fiber Reinforced Composites》, the research content is summarized as follows. A novel biobased epoxy vitrimer (Gte-VA) with desirable mech. properties was synthesized from glycerol triglycidyl ether (Gte) and an imine-containing hardener (VA), which was also a biobased compound from vanillin and 4-aminophenol. The biobased epoxy vitrimer shows Young’s modulus of 1.6 GPa and tensile strength of 62 MPa, which is close to the value of amine-cured bisphenol A diglycidyl ether. In addition, it shows excellent reprocessability, recyclability, and UV shielding performance and can be used as a matrix to prepare carbon fiber (CF)-reinforced composites. Based on the amine-imine reversible exchange reaction of the imine bonds, the CF fabric could be recycled without damage from the composite, after degrading the resin in an amine solution Especially, after recombining the degraded resin with recycled carbon fiber fabric, a regenerated carbon fiber reinforced composite with similar mech. properties to the original composite can be obtained, achieving full recycling of the carbon fiber reinforced composite. This work will open a door to the development of simple procedures of high-performance biobased epoxy vitrimer and its application in fully recycled carbon fiber reinforced composite.

Related Products of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Li, Yuqing team published research in Fresenius Environmental Bulletin in 2021 | 1739-84-0

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Recommanded Product: 1,2-Dimethyl-1H-imidazole.

Li, Yuqing;Bi, Qiang;Cheng, Wen;Zhang, Zekun;Guo, Yinyin;Ren, Kang;Xue, Juanqin research published 《 Experimental study on the synergistic effect between novel imidazoline hexafluorophosphate ionic liquid with KI on mild steel in 1M H2SO4》, the research content is summarized as follows. In this paper, the corrosion inhibition performance of [C16DMIM] [PF6] ionic liquid on mild steel in 1M H2SO4 environment and the corrosion inhibition performance and mechanism of [C16DMIM] [PF6] compounded with KI, thiourea and formaldehyde, resp., were investigated based on serious corrosion hazards of metal pickling. The inhibition ability of [C16DMIM] [PF6] was evaluated by static weight loss method, electrochem. corrosion testing and microscopic morphol. anal., while the synergistic effect of the ionic liquid compounded with KI, thiourea and formaldehyde was explored by experiments and quantum chem. calculations(QC). The static weight loss results showed that the addition of 20 mg/L [C16DMIM] [PF6] could achieve 80.1% inhibition efficiency, and the combination of 20 mg/L KI could achieve 95.9% efficiency and maintain 94.1% efficiency after 7h. The electrochem. results showed that both [C16DMIM] [PF6] and the compounded corrosion inhibitor showed a mixed inhibition mode, and the impedance test revealed that the corrosion inhibitor formed a double elec. layer to reduce corrosion through the charge transfer process. SEM (SEM) observed that the surface of the mild steel was smooth and the corrosion depth was reduced after the effect of the compound corrosion inhibitor. The synergistic effect of ILs and KI is optimal. The synergistic mechanism is that I- preferentially adsorbs on the surface to form a bridge and thus attracts the protonated [C16DMIM] [PF6] for adsorption, which in turn enhances the strength of the adsorbed film and makes the protective film denser.

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kumar, Santosh team published research in Asian Journal of Organic Chemistry in 2022 | 1739-84-0

Computed Properties of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Computed Properties of 1739-84-0.

Kumar, Santosh;Rastogi, Sumit K.;Singh, Akansha;Bharati Ahirwar, Mini;Deshmukh, Milind M.;Sinha, Arun K.;Kumar, Ravindra research published 《 Friedel-Crafts-type Reaction of (Het)Arenes with Aldehydes/Ketones under Acid-Free Conditions using Neutral Ionic Liquid: A Convenient Routes to bis(Indolyl)methanes and Beyond》, the research content is summarized as follows. Acid-free approach has been demonstrated for Friedel-Crafts-type reaction of (het)arenes with carbonyls using neutral ionic liquid (NIL). Methodol. is enabled to afford a densely functionalized bis(indolyl)methanes in good to excellent yields. This conditions is also compatible to the synthesis of 3,3-di(indol-3-yl)indolin-2-ones, bis(4-hydroxycoumarines) and triarylmethanes (total 40 examples; up to 98% yields). Gram-scale reactions and recycling study were carried out to demonstrate the practicality of present methodol. DFT studies illustrate the catalytic cycle involving simultaneous activation of C=O and indole C-H bond by NIL followed by C-C bond formation.

Computed Properties of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kumar, Sunil team published research in Journal of Organometallic Chemistry in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Reference of 1739-84-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Reference of 1739-84-0.

Kumar, Sunil;Singh, Sohan;Gadwal, Jitendra;Makar, Parvesh;Joshi, Hemant research published 《 Regioselective C-H arylation of imidazoles employing macrocyclic palladium(II) complex of organoselenium ligand》, the research content is summarized as follows. In this report, a new air stable bidentate selenium ligand was synthesized by the reaction of 1,8-bis(2-(chloromethyl)phenoxy)octane with sodium salt of phenylselenol. The reaction of this ligand with Pd(CH3CN)2Cl2 in acetonitrile under reflux conditions resulted in 19-membered ring macrocyclic palladium(II) complex. The structure of ligand precursors, ligand, and macrocyclic palladium(II) complex were authenticated by using 1H, 13C{1H} NMR spectroscopy and elemental anal. The obtained air and moisture stable, thermally robust macrocyclic palladium(II) complex was employed as catalyst for regioselective arylation of 1-methylimidazole and 1,2-dimethylimidazole with a variety of aryl bromides. The mild reaction conditions, exclusive C-5 regioselectivity, excellent yields (∼73-95%), low catalyst loading (1.5 mol%) and functional group tolerance are the advantages of this protocol. Homogeneous nature of catalysis process was confirmed with the help of mercury and triphenylphosphine poisoning tests. The catalyst can be recycled and reused with significant loss (22%) in efficiency.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Reference of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kundu, Abhinanda team published research in Journal of Organic Chemistry in 2021 | 1739-84-0

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Product Details of C5H8N2.

Kundu, Abhinanda;Chandra, Shubhadeep;Mandal, Debdeep;Neuman, Nicolas I.;Mahata, Alok;Anga, Srinivas;Rawat, Hemant;Pal, Sudip;Schulzke, Carola;Sarkar, Biprajit;Chandrasekhar, Vadapalli;Jana, Anukul research published 《 Twisted Push-Pull Alkenes Bearing Geminal Cyclicdiamino and Difluoroaryl Substituents》, the research content is summarized as follows. The systematic combination of N-heterocyclic olefins (NHOs) with fluoroarenes resulted in twisted push-pull alkenes. These alkenes carry electron-donating cyclicdiamino substituents and two electron-withdrawing fluoroaryl substituents in the geminal positions. The synthetic method can be extended to a variety of substituted push-pull alkenes by varying the NHO as well as the fluoroarenes. Solid-state mol. structures of these mols. reveal a notable elongation of the central C-C bond and a twisted geometry in the alkene motif. Absorption properties were investigated with UV-vis spectroscopy. The redox properties of the twisted push-pull alkenes were probed with electrochem. as well as UV-vis/NIR and EPR spectroelectrochem., while the electronic structures were computationally evaluated and validated.

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Lee, Yun-Yang team published research in ACS Sustainable Chemistry & Engineering in 2021 | 1739-84-0

Safety of 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Safety of 1,2-Dimethyl-1H-imidazole.

Lee, Yun-Yang;Penley, Drace;Klemm, Aidan;Dean, William;Gurkan, Burcu research published 《 Deep Eutectic Solvent Formed by Imidazolium Cyanopyrrolide and Ethylene Glycol for Reactive CO2 Separations》, the research content is summarized as follows. Solvents made from a reactive ionic liquid, with an imidazolium cation and pyrrolide anion, and ethylene glycol at a wide compositional range were studied for separations of CO2 at low partial pressures (≪0.1 bar up to 1 bar). Thermal anal. and measurements of viscosity and d. show compacting of the liquid upon mixing with enhanced stability achieved by hydrogen bonding. A detailed mechanistic study was performed by IR, quant. NMR, and ab initio calculations that show significant CO2 absorption capacity below 5000 ppm of CO2 in N2. Three reversible routes are found that yield carbonate (major product), carboxylate (moderate), and carbamate (minor) species. With CO2 at 100% RH, bicarbonate along with carbonate species form. The CO2-ethlyene glycol reaction complex, the carbonate anion, is stabilized by the hydrogen bonding and Coulombic interactions, thus preventing evaporation of the solvent during regeneration. This study demonstrates a promising approach to designer green solvents for CO2 separations in open systems such as direct air capture. Functional solvents with very low volatility are demonstrated for reactive CO2 separations suitable for direct air capture.

Safety of 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Li, Beibei team published research in Journal of Colloid and Interface Science in 2022 | 1739-84-0

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole based anticancer drug find applications in cancer chemotherapy. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Synthetic Route of 1739-84-0.

Li, Beibei;Xu, Conglei;Yu, Danning;Qi, Ziyuan;Wang, Yifei;Peng, Yongzhen research published 《 Enhanced phosphate remediation of contaminated natural water by magnetic zeolitic imidazolate framework-8@engineering nanomaterials (ZIF8@ENMs)》, the research content is summarized as follows. The efficient enrichment and reutilization of phosphate from natural water still remains a daunting challenge to satisfy the increasingly stringent phosphate discharge criteria. In response to this problem, the presented study successfully synthesizes a series of magnetic zeolitic imidazolate framework-8@engineering nanomaterials (ZIF8@ENMs) via a two-step hydrothermal and coprecipitation method by facilely growing ZIF8 and/or Fe3O4 on various functional ENMs. Structure morphol., chem. composition and hysteresis curve characterizations demonstrate the successful formation of magnetic Fe3O4-ZIF8@ENM. Amongst the prepared magnetic ZIF8@ENMs hybrids, the Fe3O4-ZIF8@ENMs possessing massive hydroxyl groups is demonstrated to harvest the maximum adsorption capacity of 441.7 mg g-1 under neutral condition. Such-acquired adsorption capacity evidently surpass state-of-the-art adsorbents. Systematic assessment of the chem. condition effects on phosphate removal, revealing its conspicuous merits of robust pH independence (94.63-98.20%), high selectivity pinpointing phosphate within complex cations, ease-of-separation and satisfactory recycle. The outstanding performance of magnetic ZIF8@ENMs are mainly derived from the formed strong Zn-O-P, Fe-O-P and electrostatic interactions between phosphate and adsorbents. Along this line, designing magnetic MOFs-based hybrids towards phosphate are anticipated to be promising avenues for advanced treatment of phosphate-like contaminants and efficient recycle in practical applications.

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kaiser, Teresa team published research in Chemie Ingenieur Technik in 2020 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . HPLC of Formula: 1739-84-0.

Kaiser, Teresa;Kabatnik, Christoph;Jupke, Andreas research published 《 Influence of Reaction Conditions on the Settling Behavior of Liquid-Liquid Dispersions》, the research content is summarized as follows. The settling behavior of liquid-liquid dispersions at ambient temperature and pressure is well investigated. However, little is known about the settling behavior of those systems at high pressure and high temperature In this work, a novel stainless steel settling cell is presented, enabling investigations on liquid-liquid settling behavior at high pressures up to 130 bar. The settling behavior of a promising CO2 hydrogenation reaction system is investigated by sequentially determining influences of dissolved CO2, side components, and temperature

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Kang, Yanli team published research in Sensors in 2021 | 1739-84-0

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Recommanded Product: 1,2-Dimethyl-1H-imidazole.

Kang, Yanli;Zhang, Lu;Wang, Wenhao;Yu, Feng research published 《 Ethanol Sensing Properties and First Principles Study of Au Supported on Mesoporous ZnO Derived from Metal Organic Framework ZIF-8》, the research content is summarized as follows. It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), XPS, field emission SEM (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger sp. surface area (22.79 m2 g-1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250°C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to d. functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (-1.813 eV) is significantly greater than that of pure ZnO (-0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.

Recommanded Product: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Karatas, Mert Olgun team published research in Dalton Transactions in 2021 | 1739-84-0

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Synthetic Route of 1739-84-0.

Karatas, Mert Olgun;Ozdemir, Namik;Sariman, Melda;Gunal, Selami;Ulukaya, Engin;Ozdemir, Ismail research published 《 Water-soluble silver(I) complexes with N-donor benzimidazole ligands containing an imidazolium core: stability and preliminary biological studies》, the research content is summarized as follows. Herein, the authors report the synthesis, characterization and preliminary biol. evaluation of two novel silver(I) complexes of type [AgL2](NO3)3 (3 and 4) with ionic N-donor benzimidazoles. The complexes have been synthesized by the reaction of 1.5 equiv of silver nitrate and N-donor benzimidazoles containing an imidazolium core at the 2-position (1 and 2) in ethanol. The X-ray anal. of 4 shows that it has two free imidazolium cores and the charge is balanced with three nitrate anions. A study by the combination of NMR, IR, LC-MS and elemental anal. techniques also suggests that the complexes have this structure both in the solid-state and solution The complexes are highly soluble and stable in water. Cytotoxicity evaluation against four cancerous human cells and one non-cancerous human cell revealed that the complexes have no significant anti-growth effect. However, the complexes showed a remarkable antimicrobial effect at normalized min. inhibitory concentrations (normalized MICs) in the range of 33-268μM against a panel of microorganisms consisting of Gram-neg. and Gram-pos. bacteria, and fungi.

Synthetic Route of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem