Wu, Shi team published research in Catalysis Letters in | 1739-84-0

SDS of cas: 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole based anticancer drug find applications in cancer chemotherapy. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). SDS of cas: 1739-84-0.

Wu, Shi;Huang, Jie;Wang, Yingting;Tao, Huilin;Yu, Zhongliang;Zhang, Yongfan research published 《 Bisimidazolium Tungstate Ionic Liquids: Highly Efficient Catalysts for the Synthesis of Linear Organic Carbonates by the Reaction of Ethylene Carbonate with Alcohols》, the research content is summarized as follows. A series of bisimidazolium tungstate ionic liquids were synthesized and applied to catalyze the reaction of ethylene carbonate (EC) with alcs. A detailed investigation was carried out on the relationship between catalyst structures and catalytic activities. The result showed that 1-butyl-3-methyl-bisimidazolium tungstate ([Bmim]2WO4) containing double C2-H in bisimidazolium and WO42- had more effectively catalytic performance than other bisimidazolium tungstate and conventional imidazolium salt (OAc, Cl, Br). Under the optimized conditions of 1:15 molar ratio of EC and ethanol, 5 mol% [Bmim]2WO4, 85 °C and 0.5 h, the yield of di-Et carbonate (DEC) was nearly 100%. The detailed DFT calculations and NMR spectroscopy indicated that the high catalytic activity of [Bmim]2WO4 was not only because the strong nucleophilic ability of WO42- could activate ethanol, but also the special structure of double C2-H in bisimidazolium could cooperatively activate EC. The reaction was catalyzed by synergistic effect in double C2-H and WO42- of [Bmim]2WO4. In addition, [Bmim]2WO4 could be used seven times without significant loss of catalytic activity.

SDS of cas: 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Xing, Yi team published research in Journal of Membrane Science in 2021 | 1739-84-0

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Product Details of C5H8N2.

Xing, Yi;Geng, Kang;Chu, Xiaomeng;Wang, Chenyi;Liu, Lei;Li, Nanwen research published 《 Chemically stable anion exchange membranes based on C2-Protected imidazolium cations for vanadium flow battery》, the research content is summarized as follows. Imidazolium-based anion exchange membranes (AEMs) are attractive as the separator for vanadium redox flow battery (VFB) application. However, the lack of fundamental understanding of the correlations between imidazolium chem. structure and their phys. properties as well as cell performance constraints the design of advanced AEMs in VFBs. In this work, by designing the “clickable” imidazolium compounds from C2-Me or C2-Ph substituted imidazolium to C2-Ph substituted benzimidazolium, a series of PSf-based AEMs having pendant C2-protected imidazolium derivatives were prepared by efficient CuAAC reaction to explore how the nature of C2 substitution affected the electrochem. property of AEMs and the resulting VFB performance. Interestingly, PSf-MIm with C2-Me protected imidazolium group showed lowest area resistance (0.3 Ω cm2, IEC = 1.66 meq./g) in 3 M H2SO4 aqueous solution but unfavorable vanadium permeability due to its highest swelling ratio. The introduction of bulky C2-Ph substituted benzimidazolium led to the distinct microphase separation in PSf-PhBIm membrane, and thus reduced water uptake, high vanadium selectivity, and comparable conductivity were observed As a result, the single VFB with PSf-MIm-1.2 membrane exhibited better electrochem. performance with a coulombic efficiency (CE) of 97.0%, and an energy efficiency (EE) of 82.4% at a c.d. of 120 mA/cm2, higher than those of Nafion N115 membrane (EE = 75.5%) and unsubstituted imidazolium-based AEMs (EE = 80.6%). More importantly, both ex situ stability testing in 1.5 M (VO2)2SO4/3 M H2SO4 solution for 90 days and in situ cycling performance at a c.d. of 120 mA/cm2 demonstrated that the chem. structure of C2-substituted imidazolium based AEMs remained intact after stability tests as confirmed by NMR anal., while significant degradation was found for unsubstituted PSf-Im membrane via possible nucleophilic addition mechanism. Therefore, the VFB with PSf-MIm membrane showed the best long-term durability with only 34.1% loss in EE for 3638 h of operating (4800 cycles). This work not only fills the knowledge gap on the structure-property relationship of imidazolium-based AEMs for VFB application, but also gives us new directions to design stable AEMs for durable VFBs.

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Jian team published research in Journal of Chemical Thermodynamics in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., SDS of cas: 1739-84-0

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. SDS of cas: 1739-84-0.

Wang, Jian;Wu, Junshuang;Wu, Wenqing;Tong, Jing research published 《 Estimation of the polarity and prediction of the molar surface Gibbs energy for amino acid ionic liquids – [C4Dmim][Gly] and [C4Dmim][Ala]》, the research content is summarized as follows. 1-Butyl-2,3-dimethylimidazolium glycine ([C4Dmim][Gly]) and 1-butyl-2,3-dimethylimidazolium alanine ([C4Dmim][Ala]) were synthesized by neutralization method and characterized by 1H NMR and 13C NMR spectrum. The exptl. values of the d., surface tension and refractive index of two amino acid ionic liquids were measured by standard addition method. Firstly, the polarity coefficients of [C4Dmim][Gly] and [C4Dmim][Ala] were calculated by polarity coefficient (P), and the polarity trend of other ionic liquids (ILs) was predicted. For the same anion, the polarity values of the same series of ILs decrease with increasing carbon chain length, and the anion species also affect the polarity of ILs. Secondly, according to the relationship between the slope of the new Eotvos empirical equation and the molar surface entropy (s), the polarity values of other ILs were also estimated and the conclusion obtained was basically consistent with polarity coefficient Furthermore, the predicted molar surface Gibbs energy values of samples were obtained by the new Eotvos empirical equation, and the predicted values were highly consistent with the corresponding exptl. values.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., SDS of cas: 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Jian team published research in Journal of Molecular Liquids in 2022 | 1739-84-0

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Product Details of C5H8N2.

Wang, Jian;Li, Yuao;Chen, Xiguang;Wei, Ning;Tong, Jing research published 《 Excess properties and activation properties for viscous flow of amino acid ionic liquids with H2O binary mixtures》, the research content is summarized as follows. Amino acid ionic liquids (ILs) 1-butyl-2,3-dimethylimidazolium glycine ([C4Dmim][Gly]), 1-butyl-2,3-dimethylimidazolium alanine ([C4Dmim][Ala]) and 1-butyl-2,3-dimethylimidazolium threonine ([C4Dmim][Thr]) were prepared Over the temperature from (288.15-318.15) K, the d., surface tension and viscosity for binary system mixtures of ILs with H2O were measured, and excess thermodn. properties and activation properties for viscous flow of these binary system mixtures were systematically studied. Secondly, the variation trend between excess molar volume (VE)/excess molar surface Gibbs energy (gEs) and mole fraction for ILs + H2O binary system mixtures was investigated. With the increase of mole fraction, the VE and gEs values of binary system mixtures increased firstly and then decreased, and they were pos. value, which may be due to the weak chem. interaction between ILs and H2O in the mixture Furthermore, according to the thermodn. formula, the Gibbs energy of activation for viscous flow of the relative viscosity (ΔGr), activation entropy (ΔSr) and activation enthalpy (ΔHr) were calculated Over the entire concentration range, the ΔGr values for binary system mixtures of ILs with H2O were neg. value, and the result was in good agreement with relative viscosity (ηr).

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Yijie team published research in Small in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Electric Literature of 1739-84-0

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Electric Literature of 1739-84-0.

Wang, Yijie;Li, Aoshuang;Cheng, Chuanwei research published 《 Ultrathin Co(OH)2 Nanosheets@Nitrogen-Doped Carbon Nanoflake Arrays as Efficient Air Cathodes for Rechargeable Zn-Air Batteries》, the research content is summarized as follows. Developing highly active, cost-effective, and durable bifunctional oxygen electrocatalysts is an important step for the advancement of rechargeable Zn-air batteries (ZABs). Herein, an efficient bifunctional oxygen electrocatalyst of ultrathin Co(OH)2 nanosheets supported on nitrogen-doped carbon nanoflake arrays (named as Co(OH)2@NC), is reported, which yields excellent bifunctional activity, i.e., a low overpotential of 285 mV to reach 10 mA cm-2 for oxygen evolution reaction (OER), a high half-wave potential (0.83 V) for oxygen reduction reaction (ORR), and a low potential gap (ΔE) of 0.69 V. The excellent bifunctional catalytic performance can be ascribed to the concerted efforts of cobalt hydroxide toward OER and nitrogen-doped carbon for ORR. The Co(OH)2@NC nanoflake arrays is further used as binder-free air cathodes for rechargeable Zn-air batteries, exhibiting a high specific capacity of 798.3 mAh gZn-1, improved stability (a working life of >70 h at 5 mA cm-2), as well as a reduced long-term charging voltage, which outperforms the counterparts of NC nanoflake arrays and Pt/C-based air cathodes. One step further, the Co(OH)2@NC nanoflake arrays on carbon cloth are directly used as binder-free air cathodes for flexible, solid-state ZABs, showing excellent performance under deformation as well.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Electric Literature of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Jian team published research in Journal of Chemical Thermodynamics in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., SDS of cas: 1739-84-0

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. SDS of cas: 1739-84-0.

Wang, Jian;Wu, Junshuang;Wu, Wenqing;Tong, Jing research published 《 Estimation of the polarity and prediction of the molar surface Gibbs energy for amino acid ionic liquids – [C4Dmim][Gly] and [C4Dmim][Ala]》, the research content is summarized as follows. 1-Butyl-2,3-dimethylimidazolium glycine ([C4Dmim][Gly]) and 1-butyl-2,3-dimethylimidazolium alanine ([C4Dmim][Ala]) were synthesized by neutralization method and characterized by 1H NMR and 13C NMR spectrum. The exptl. values of the d., surface tension and refractive index of two amino acid ionic liquids were measured by standard addition method. Firstly, the polarity coefficients of [C4Dmim][Gly] and [C4Dmim][Ala] were calculated by polarity coefficient (P), and the polarity trend of other ionic liquids (ILs) was predicted. For the same anion, the polarity values of the same series of ILs decrease with increasing carbon chain length, and the anion species also affect the polarity of ILs. Secondly, according to the relationship between the slope of the new Eotvos empirical equation and the molar surface entropy (s), the polarity values of other ILs were also estimated and the conclusion obtained was basically consistent with polarity coefficient Furthermore, the predicted molar surface Gibbs energy values of samples were obtained by the new Eotvos empirical equation, and the predicted values were highly consistent with the corresponding exptl. values.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., SDS of cas: 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Jian team published research in Journal of Molecular Liquids in 2022 | 1739-84-0

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Product Details of C5H8N2.

Wang, Jian;Li, Yuao;Chen, Xiguang;Wei, Ning;Tong, Jing research published 《 Excess properties and activation properties for viscous flow of amino acid ionic liquids with H2O binary mixtures》, the research content is summarized as follows. Amino acid ionic liquids (ILs) 1-butyl-2,3-dimethylimidazolium glycine ([C4Dmim][Gly]), 1-butyl-2,3-dimethylimidazolium alanine ([C4Dmim][Ala]) and 1-butyl-2,3-dimethylimidazolium threonine ([C4Dmim][Thr]) were prepared Over the temperature from (288.15-318.15) K, the d., surface tension and viscosity for binary system mixtures of ILs with H2O were measured, and excess thermodn. properties and activation properties for viscous flow of these binary system mixtures were systematically studied. Secondly, the variation trend between excess molar volume (VE)/excess molar surface Gibbs energy (gEs) and mole fraction for ILs + H2O binary system mixtures was investigated. With the increase of mole fraction, the VE and gEs values of binary system mixtures increased firstly and then decreased, and they were pos. value, which may be due to the weak chem. interaction between ILs and H2O in the mixture Furthermore, according to the thermodn. formula, the Gibbs energy of activation for viscous flow of the relative viscosity (ΔGr), activation entropy (ΔSr) and activation enthalpy (ΔHr) were calculated Over the entire concentration range, the ΔGr values for binary system mixtures of ILs with H2O were neg. value, and the result was in good agreement with relative viscosity (ηr).

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Wang, Yijie team published research in Small in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Electric Literature of 1739-84-0

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Electric Literature of 1739-84-0.

Wang, Yijie;Li, Aoshuang;Cheng, Chuanwei research published 《 Ultrathin Co(OH)2 Nanosheets@Nitrogen-Doped Carbon Nanoflake Arrays as Efficient Air Cathodes for Rechargeable Zn-Air Batteries》, the research content is summarized as follows. Developing highly active, cost-effective, and durable bifunctional oxygen electrocatalysts is an important step for the advancement of rechargeable Zn-air batteries (ZABs). Herein, an efficient bifunctional oxygen electrocatalyst of ultrathin Co(OH)2 nanosheets supported on nitrogen-doped carbon nanoflake arrays (named as Co(OH)2@NC), is reported, which yields excellent bifunctional activity, i.e., a low overpotential of 285 mV to reach 10 mA cm-2 for oxygen evolution reaction (OER), a high half-wave potential (0.83 V) for oxygen reduction reaction (ORR), and a low potential gap (ΔE) of 0.69 V. The excellent bifunctional catalytic performance can be ascribed to the concerted efforts of cobalt hydroxide toward OER and nitrogen-doped carbon for ORR. The Co(OH)2@NC nanoflake arrays is further used as binder-free air cathodes for rechargeable Zn-air batteries, exhibiting a high specific capacity of 798.3 mAh gZn-1, improved stability (a working life of >70 h at 5 mA cm-2), as well as a reduced long-term charging voltage, which outperforms the counterparts of NC nanoflake arrays and Pt/C-based air cathodes. One step further, the Co(OH)2@NC nanoflake arrays on carbon cloth are directly used as binder-free air cathodes for flexible, solid-state ZABs, showing excellent performance under deformation as well.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Electric Literature of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Tsyrenova, Ayuna team published research in Journal of Physical Chemistry Letters in 2020 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Related Products of 1739-84-0.

Tsyrenova, Ayuna;Farooq, Muhammad Q.;Anthony, Stephen M.;Mollaeian, Keyvan;Li, Yifan;Liu, Fei;Miller, Kyle;Ren, Juan;Anderson, Jared L.;Jiang, Shan research published 《 Unique Orientation of the Solid-Solid Interface at the Janus Particle Boundary Induced by Ionic Liquids》, the research content is summarized as follows. This study reveals the unique role on Janus particles of the solid-solid interface at the boundary in determining particle interactions and assembly. In an aqueous ionic liquid (IL) solution, Janus spheres adopt intriguing orientations with their boundaries pinned on the glass substrate. It was further discovered that the orientation was affected by the particle amphiphilicity as well as the chem. structure and concentration of the IL. Further characterization suggests that the adsorption on the hydrophilic side is due to both an electrostatic interaction and hydrogen bonding, while adsorption on the hydrophobic side is due to hydrophobic attraction. Through the concerted interplay of all these interactions, the amphiphilic boundary may attract an excessive amount of IL cations, which guide the unique orientations of the Janus spheres. The results highlight the importance of the Janus boundary that has not been recognized previously. Adsorption at the solid-solid interfaces may inspire new applications in areas such as separation and catalysis.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Related Products of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Urena, Nieves team published research in Polymer in 2021 | 1739-84-0

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Name: 1,2-Dimethyl-1H-imidazole.

Urena, Nieves;Perez-Prior, Maria Teresa;Rio, Carmen del;Varez, Alejandro;Levenfeld, Belen research published 《 New amphiphilic semi-interpenetrating networks based on polysulfone for anion-exchange membrane fuel cells with improved alkaline and mechanical stabilities》, the research content is summarized as follows. As considerable advance has recently been made in enhancing the conductivity of anion-exchange membranes, durability has become the critical requirement in the development of fuel cells. Such properties often develop at the expense of the other. In this work, new amphiphilic semi-interpenetrating networks composed of free polysulfone and crosslinked polysulfone are synthesized for the first time. The same nature of both polymers makes them highly compatible. The free polymer provides the hydrophobic component, whereas the crosslinked polysulfone, functionalized with trimethylammonium, 1-methylimidazolium, or 1,2-dimethylimidazolium groups, is responsible for the ionic conductivity The compatibility between both components in the blend, improves the mech. properties, while unaffecting the transport properties. Thus, the obtained membranes exceed the mech. behavior of com. materials, even in conditions of extreme humidity and temperature The tensile strength of these synthesized membranes can reach to relatively high values, and when compared to the com. PSU, the difference in tensile strength can be noted to be as low as 10%. Moreover, the tensile strength and the ductility values of the crosslinked PSU are higher than those obtained with non-crosslinked PSU. Furthermore, the membranes presented in this work show a great alk. stability (e.g. semi-interpenetrating network containing 1,2-dimethylimidazolium maintains 87% of the ionic conductivity after 14 days of treatment). Thus, these membranes provide an improvement in the durability limiting factors, in comparison to functionalized polysulfones, fulfilling the requirements to be used as electrolytes in anion-exchange membrane fuel cells.

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem