S News Share a compound : 144689-93-0

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, belongs to imidazoles-derivatives compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. Recommanded Product: 144689-93-0

An eggplant flask was charged with 5- (1-hydroxy-1-methylethyl) -2-propyl-3H-imidazole-4-carboxylic acid ethyl ester (10 g, 41.7 mmol; imidazole derivative (compound of formula (4b)), 4-bromobenzyl bromide (10.8 g, 43 mmol; dihalogen compound),Dimethylacetamide (40 ml; first reaction solvent (DMA)) was added to a mixture of potassium carbonate (7.1 g, 51.6 mmol; base) and stirred for 48 hours. After the reaction, water (120 mL) was added to the reaction solution and stirred. The precipitated crystals were filtered and recrystallized from ethyl acetate to give 3- (4-bromobenzyl) -5- (1-hydroxy-1-methylethyl) -2-propyl-3H-imidazole-4-carboxylic acid ethyl ester(A halogenated imidazole derivative (compound of the formula (1b))) 8 g (yield 47%).

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Tokuyama Corporation; Sekine, Masahiko; Tanaka, Kenji; (31 pag.)JP2018/154611; (2018); A;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

9/18/2021 News Brief introduction of 144689-93-0

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Related Products of 144689-93-0, A common heterocyclic compound, 144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, molecular formula is C12H20N2O3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

Into a 100-mL two-neck flask were sequentially added imidazole 4(5 g, 21.0 mmol), bromide 3 (9.05 g, 22.3 mmol), K2CO3 (5.1 g,37.4 mmol) and MeCN (50 mL) at 25 C. The reaction mixture washeated at 84 C until completion of the reaction (18 h). Then, themixture was cooled to 25 C and filtered through Celite. TheCelite bed was washed with EtOAc (2 × 10 mL). To the combinedEtOAc layer was added H2O (100 mL). The resulting two layerswere separated and the aqueous layer was extracted with EtOAc (3× 50 mL). The combined organic layer was washed with 2% aq HCl(30 mL) followed by brine (150 mL). The organic layer was driedover Na2SO4 and concentrated under reduced pressure to give 1a;yield: 9.78 g (83%)

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Article; Seki, Masahiko; Synthesis; vol. 46; 23; (2014); p. 3249 – 3255;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

18-Sep-2021 News The important role of 144689-93-0

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, A new synthetic method of this compound is introduced below., category: imidazoles-derivatives

Example 3; Preparation of olmesartan medoxomilTo dimethyl acetamide (800 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium carbonate (200 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (300 gms) at 45-50C. The contents were stirred for 8-10 hours at 45-50C. The insolubles were filtered. The contents were cooled to 5-100C. Potassium tertiary butoxide (100 gms) was charged at a temperature below 45C. The reaction was maintained at 40-450C for 3 hrs. To this was slowly added 5-methyl-2-oxo-1 ,3-dioxane-4-yl) methyl chloride at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganics. The reaction mass was charcoalized using charcoal (10 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500 ml), neutralized with base and extracted in dichloromethane (500 ml).The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (250 ml) to give 55 gms of the title compound. Chromatogrphic purity- > 99%

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

9/13/21 News Share a compound : 144689-93-0

According to the analysis of related databases, 144689-93-0, the application of this compound in the production field has become more and more popular.

Electric Literature of 144689-93-0, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 144689-93-0 as follows.

Example 6:; (5-MethyI-2-oxo-l,3-dioxol-4-yI)methyl 5-(2-hydroxypropan-2-yl)-2-propyl-3-[[4-[2- (2H-tetrazoI-5-yl)phenyl]phenyl]methyl]imidazole-4-carboxylate (olmesartan medoxomil) (Ie); Step I: 5-(2-Hydroxypropan-2-yl)-2-propyl-3-[[4-[2-(N-(2-trimethylsilylethoxymethyl) tetrazol-5-yl)phenyl]phenyl]methyl]imidazole-4-ethylcarboxylate (Vd); 2-Propyl-5-[(l-hydroxy-l-methyl)ethyl]-3H-imidazole-4-ethylcarboxylate (0.808 g, 0.0033675 mol) was added to the two isomers (IVb) (1.5 g, 0.0033675 mol) and K2CO3 (0.558 g, 0.0040382 mol) in anhydrous DMF (10 mL) under N2 atmosphere. The mixture was stirred at room temperature for 17 hrs (TLC monitoring: cyclohexane/AcOEt 6:4). The mixture was partitioned between water and AcOEt. The organic layer was washed with water (3 times), dried over Na2SO4 and concentrated under reduced pressure to give a residue (1.8 g) that was purified by flash chromatography on silica (cyclohexane/AcOEt 6:4) to give the isomer (Vd1) (0.499 g) and the isomer (Vd2) (0.206 g) as oils. Yield: 35%. (Vd1) (isomer with lower elution time):1H-NMR (400 MHz, CDCl3, delta): -0.03 (s, 9H, Me3Si), 0.92 (t, J=8.2Hz, 2H, SiCH2CH2O), 0.96 (t, J=7.2Hz, 3H, CH2CH2CH3), 1.18 (t, J=7.2etaz, 3H, OCH2CHi), 1.64 (s, 6eta, CMe2), 1.67-1.76 (m, 2H5 CH2CH2CH3), 2.66 (t, J=7.6Hz, 2H, CH2CH2CH3), 3.66 (t, J=8.2Hz, 2H, SiCH2CH2O), 4.22 (q, J=7.2etaz, 2H, OCH2CH3), 5.44 (s, 2H, ArCH2N), 5.78 (s, 2H, OCH2N), 6.84-6.86 (m, 2H) 7.14-7.16 (m, 2H) 7.41-7.43 (m, IH) 7.46-7.56 (m, 2H) 7.84- 7.86 (m, IH) (aromatic protons).(Vd2) (isomer with higher elution time): 1H-NMR (400 MHz, CDCl3, delta): -0.10 (s, 9H, Me3Si), 0.70 (t, J=8.4Hz, 2H, SiCH2CH2O), 0.92 (t, J=7.4Hz, 3H, CH2CH2CH5), 1.13 (t, J=7.0etaz, .3eta, OCH2CH3), 1.60 (s, 6eta, CMe2), 1.62-1.71 (m, 2H, CH2CH2CH3), 2.58 (t, J=7.8Hz, 2H, CH2CH2CH3), 3.39 (t, J=8.4Hz, 2H, SiCH2CH2O), 4.17 (q, J=7.2etaz, 2H, OCH2CH3), 5.05 (s, 2H, ArCH2N), 5.38 (s, 2H, OCH2N), 6.81-6.83 (m, 2H) 7.05-7.07 (m, 2H) 7.49-7.52 (m, 2H) 7.55-7.57 (m, IH) 7.61- 7.65 (m, IH) (aromatic protons). Step II: 5-(2-Hydroxypropan-2-yl)-2-propyl-3-[[4-[2-(N-(2-trimethylsilylethoxymethyl) tetrazol-5-yl)phenyl]phenyl]methyl]imidazole-4-carboxylic acid (Ve i); A solution of NaOH (0.052 g, 0.001311 mol> in water (1 mL) was added to compound (VdO (0.262 g, 0.0004337 mol) in THF (1 mL). The mixture was stirred at room temperature for 23 hrs (TLC monitoring: CH2Cl2/MeOH/AcOH 85:10:5). HCl IN was added until pH 4 was reached. The mixture was extracted with AcOEt. The organic phase was dried over Na2SO4 and concentrated under reduced pressure to give the compound (Vei) (0.261 g) as a white solid, m.p. 68-69C. Yield: 99%. 1H-NMR (400 MHz, CDCl3, delta): -0.05 (s, 9H, Me3Si), 0.86 (t, J-7.2Hz, 3H, CH2CH2CH3), 0.89 (t, J=8.1etaz, 2H, SiCH2CH2O), 1.54-1.60 (m, 2H, CH2CH2CH3) 1.67 (s, 6H, CMe2), 2.94 (t, J-7.2Hz, 2H, CH2CH2CH3), 3.65 (t, J=8.1Hz, 2H, SiCH2CH2O), 5.75 (s, 2eta, ArCH2N), 5.79 (s, 2H, OCH2N), 6.97-6.99 (m, 2H) 7.12-7.14 (m, 2H) 7.35-7.38 (m, IH) 7.44-7.53 (m, 2H) 7.83-7.85 (m, IH) (aromatic protons). Step III: 4-Bromomethyl-5-methyl~l,3-dioxol~2-one; A mixture of 4,5-dimethyl-l,3-dioxol-2-one (1.5 g, 0.013158 mol), NBS (2.34 g, 0.013158 mol) and benzoyl peroxide (0.089 g, 0.0003684 mol) in CCl4 (20 mL) was stirred at 77C for 6 hrs (TLC monitoring: cyclohexane/AcOEt 6:4). The solution was treated with an aqueous solution OfNaHCO3 and extracted with CH2Cl2. The organic phase was dried over Na2SO4 and concentrated under reduced pressure to give 4-bromomethyl-5 -methyl- 1,3- dioxol-2-one (2.34 g). Yield: 92%.1H-NMR (400 MHz, CDCl3, delta): 2.13 (s, 3H, CH3), 4.18 (s, 2H, CH2Br). Stp IV: (5-Methyl-2-oxo-l,3-dioxol-4-yl)methyl 5-(2~hydroxypropan-2-yl)-2-propyl-3-[[4- [2-(N-(2-trimethylsilylethoxymethyl)tetrazol-5-yl)pherpsil]phenyl]methyl]imidazole-4- carboxylate (Vf1); A mixture of the compound (Ve1) (0.260 g, 0.0004516 mol), 4-bromomethyl-5-methyl-l,3- dioxol-2-one (0.1 g, 0.000518 mol) and K2CO3 (0.033 g, 0.000239 mol) in anhydrous DMF (1.5 mL) was stirred for 1.5 hrs at room temperature under N2 atmosphere (TLC monitoring: CH2Cl2/Me0H/Ac0H 85:10:5). The mixture was partitioned between a saturated solution of NaHCO3 and AcOEt. The organic phase was washed with water (3 times), dried over Na2SO4 and concentrated under reduced pressure to give the compound (Vf1) (0.3042g) as a yellow oil. Yield: 98%.1H-NMR (400 MHz, CDCl3, delta): -0.02 (s, 9H, Me3Si), 0.92 (t, J=8.1Hz, 2H, SiCH2CH2O), 0.98 (t, J=7.2Hz, 3H, CH2CH2CH3), 1.64 (s, 6eta, CMe2), 1.70-1.80 (m, 2H, CH2CH2CH3), 2.07 (s, 3H, CH3C=C), 2.76 (m, 2H, CH2CH2CH3), 3.67 (t, J=8.1Hz, 2H, SiCH2CH2O), 4.89 (s, 2eta, COOCH2), 5.41 (s, 2H, ArCH2N), 5.79 (s, 2H, OCH2N), 6.80-6.82 (m, 2H) 7.14-7.16 (m, 2H) 7.44-7.52 (m, 2H) 7.54-7.58 (m, IH) 7.85-7.87 (m, IH) (aromatic protons). Step V: (5-Methyl-2-oxo-l,3-dioxol-4-yl)methyl 5-(2-hydroxypropan-2-yl)~2~propyl~3-[[4- [2~(2H-tetrazol-5-yl)phenyl]phenyl]methyl]imidazole-4-carboxylate (olmesartan medo…

According to the analysis of related databases, 144689-93-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; S.I.M.S. S.r.l. – SOCIETA ITALIANA MEDICINALI SCANDICCI; WO2008/12852; (2008); A1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

9-Sep-21 News Simple exploration of 144689-93-0

Statistics shows that Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate is playing an increasingly important role. we look forward to future research findings about 144689-93-0.

Synthetic Route of 144689-93-0, These common heterocyclic compound, 144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

EXAMPLE 15 Ethyl 1-[(2′-t-butoxycarbonylbiphenyl-4-yl)methyl]-4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate (Compound No. 1-119) Following a procedure similar to that described in Example 1(a), but using 0.845 g of ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate (prepared as described in Preparation 9) and 1.22 g of t-butyl 4′-bromomethylbiphenyl-2-carboxylate, 1.31 g of the title compound were obtained as a gum. This compound was allowed to stand at room temperature, which caused it to crystallize. It was then recrystallized from a mixture of diisopropyl ether and hexane, to give pure title compound, melting at 90-91 C. Nuclear Magnetic Resonance Spectrum (CDCl3) delta ppm: 0.97 (3H, triplet, J=7 Hz); 1.23 (3H, triplet, J=7 Hz); 1.25 (9H, singlet); 1.60 (6H, singlet); 1.82 (2H, sextet, J=7 Hz); 2.67 (2H, triplet, J=7 Hz); 4.24 (2H, quartet, J=7 Hz); 5.51 (2H, singlet); 5.72 (1H, singlet); 6.87-7.85 (8H, multiplet).

Statistics shows that Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate is playing an increasingly important role. we look forward to future research findings about 144689-93-0.

Reference:
Patent; Sankyo Company, Limited; US5616599; (1997); A;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

8-Sep-2021 News Discovery of 144689-93-0

According to the analysis of related databases, 144689-93-0, the application of this compound in the production field has become more and more popular.

Reference of 144689-93-0, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 144689-93-0 as follows.

First, alkyl 4-(1-hydroxy-1-methylethyl)-2-propyl imidazole-5-carboxylate (20.0 g, 83.2 mmol) and sodium hydroxide powder (6.6 g, 165.0 mmol) were dissolved in 100 ml of acetone and distilled water, and the mixture was stirred and refluxed at 110 C for 3 hours. After cooling to room temperature, the acetone was removed by concentration under reduced pressure. The distilled water layer was titrated with 5N HCl acid at 0C. The solids were filtered off and dried to give compound 2 (14.46 g, 82%).

According to the analysis of related databases, 144689-93-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; CTC Bio Co.,Ltd; Oh, Chang Hyun; Kim, Jung Hoon; Yu, Sung Won; Kim, Hyun Ir; (9 pag.)KR101628758; (2016); B1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

9/7/2021 News Extracurricular laboratory: Synthetic route of 144689-93-0

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

Synthetic Route of 144689-93-0, A common heterocyclic compound, 144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, molecular formula is C12H20N2O3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

Example 1; Preparation of olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered sodium hydroxide (26 gms). To this, 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) was charged at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-450C. A solution of 5-methyl-2-oxo-1 , 3-dioxane-4-yl)methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) was slowly added to the reaction mass at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities, charcoalized using charcoal (10 gms) andstirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500ml), neutralized with base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from acetone (250 ml) to give 55 gms of the title compound. Chromatographic purity- > 99%

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

6-Sep-2021 News Continuously updated synthesis method about 144689-93-0

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, A new synthetic method of this compound is introduced below., HPLC of Formula: C12H20N2O3

Example 5; Preparation of ethyl-4-(1-hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(trityl tetrazol-5-yl)phenyl]phenyl}methylimidazole-5-carboxylate4-(1-Hydroxy-1-methylethyl)-2-propyl-1H-imidazole-5-carboxylic acid ethyl ester (100 g), N-(triphenylmethyl)-5-(4′-bromomethyl biphenyl-2-yl)tetrazole (250 g), potassium carbonate (170 g) & tetra butyl ammonium bromide (15 g) in acetone (2.5 L) were refluxed for 10-16 hours. Progress of reaction was monitor by HPLC. After completion of reaction, reaction mass was cooled and filtered to remove the salts. Inorganic salts were washed with acetone (300 mL). Acetone from combine the filtrate and washings was distilled. The residue obtained was crystallized in acetonitrile to get ethyl-4-(1-hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)phenyl]phenyl}methylimidazole-5-carboxylate (280 g).HPLC Purity=98.5%

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; Ramanjaneyulu, Gorantla Seeta; Mohan, Bandari; Ray, Purna Chandra; Sethi, Madhuresh Kumar; Rawat, Vijendra Singh; Krishna, Yerramalla Raja; Lakshminarayana, Vemula; Srinivas, Mamidi; US2009/281327; (2009); A1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

September 1,2021 News Sources of common compounds: 144689-93-0

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, A new synthetic method of this compound is introduced below., Application In Synthesis of Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate

(1) potassium carbonate K2CO3 , AMST-1 C12H20N2O3 , AMST-2 C33H25BrN4 , In acetonitrile is added to the reaction kettle, raising the temperature to 80 C, keeps reaction for 3 hours, HPLC monitoring reaction, after the completion of reaction of outer 95 C distilling acetonitrile, lowering the temperature to 0 C stirring 8 hours, filtration products, the filter cake is acetonitrile leaching, after drying, the crude product in water for 3 C beating 5 hours to remove the inorganic salt, filtered, washed with water, 90 C drying to constant weight to obtain the product AMST – 3 C45 H44 N6 O3 ; K the potassium carbonate2 CO3 , AMST-1 C12H20N2O3 , AMST-2 C33H25BrN4 , Acetonitrile and water mass ratio of the 173:150: 383:2000: 1600;

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Jiangxi Yong Tong Technology Co., Ltd.; Liu Zhongchun; (10 pag.)CN107311989; (2017); A;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Sources of common compounds: 144689-93-0

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 144689-93-0, name is Ethyl 4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate, A new synthetic method of this compound is introduced below., Recommanded Product: 144689-93-0

Ethyl-4-(1-hydroxy-1-methylethyl)-2-propyl-imidazole-5-carboxylate (100 gm) was dissolved in acetone (2500 ml) and then added potassium carbonate (100 gm), 5-[4′-(bromomethyl)[1,1′-biphenyl]-2-yl]-2-(triphenylmethyl)-1H-tetrazole (250 gm) and tert-butyl ammonium bromide (15 gm) under stirring at room temperature. The temperature of the reaction mass was raised to 50 to 55 C. and maintained for 15 hours at 50 to 55 C. The reaction mass was cooled to 45 C. and passed over celite bed. The collected filtrate was cooled to 0 to 5 C. and then added a solution of potassium carbonate (36 gm) in water (36 ml) for 1 hour. The temperature of the reaction mass was raised to room temperature and maintained for 16 hours at room temperature. The acetone was distilled off completely under vacuum at below 40 C. to obtain residue. To the residue was added sodium chloride solution (10%, 900 ml) and then added ethyl acetate (1500 ml). The layers were separated and the aqueous layer was extracted. Combined the both organic layers and dried over sodium sulfate. The solvent was distilled off completely to obtain a residual mass. A mixture of acetone (1200 ml), potassium carbonate (100 gm), (4-bromoethyl)-5-methyl-oxo-1,3-dioxane (105 gm) and potassium iodide (17 gm) were added under stirring at room temperature and then the contents were heated to 50 to 55 C. The solution was added to the above residual mass for 1 hour 30 minutes and maintained for 1 hour 30 minutes at 50 to 55 C. The reaction mass was cooled to 45 C. and filtered. The solvent was distilled off completely to obtain residue. Toluene (1500 ml) was added to the residue and the layers were separated. The toluene layer was dried over sodium sulfate and distilled off the layer under vacuum up to obtain clear residual mass. To the residual mass was added methanol (1500 ml) and stirred for 30 minutes at room temperature. The reaction mass was cooled to 10 to 15 C. and maintained for 1 hour 30 minutes. The separated solid was filtered and dried at 40 to 45 C. for 7 hours to obtain 270 gm of trityl olmesartan medoxomil. Trityl olmesartan medoxomil: 98.5%; Trityl olmesartan ethyl ester impurity: 0.35%; Bromo trityl olmesartan medoxomil impurity: 0.35%; Methyl trityl olmesartan medoxomil impurity: 0.34%.

The synthetic route of 144689-93-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; HETERO RESEARCH FOUNDATION; Parthasaradhi Reddy, Bandi; Rathnakar Reddy, Kura; Muralidhara Reddy, Dasari; Raji Reddy, Rapolu; Ramakrishna Reddy, Matta; Vamsi Krishna, Bandi; US2013/190506; (2013); A1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem