Luo, Haotian team published research in Journal of Environmental Chemical Engineering in 2022 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Category: imidazoles-derivatives

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Category: imidazoles-derivatives.

Luo, Haotian;Chen, Xiangying;Huang, Tao;Kang, Wei;Li, Xinxutan;Jiang, Zipeng;Pang, Li;Bai, Jingkun;Tan, Wei;Li, Jing;Zhou, Baolong research published 《 In situ simultaneously integrating Co-N-C sites and Co9S8 nanoparticles into N,S-doped porous carbon as trifunctional electrocatalysts for Zn-air batteries driving water splitting》, the research content is summarized as follows. Developing cost-effective, but efficient and stable trifunctional catalysts synchronously for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution reaction (HER) under same electrolytes is essential for the real application of renewable energy systems. Herein, we report the synthesis of a cheap and high-efficiency electro-catalyst based on Co9S8 nanoparticles decorated with Co-N-C sites well anchored to metal-porous organic polymer (MPOP)-derived N, S-codoped carbon (Co-IM-POP-1000), which exhibits pronounced trifunctional electrocatalytic activity for ORR, OER and HER, simultaneously, in alk. media. Consequently, breathing Zn-air batteries (ZABs) employing Co-IM-POP-1000 as the sole catalysts present prominent performance, i. e., the charge/discharge voltage, power and energy d., specific capacity, rate performance as well as the lifetime, outperforming that of Pt/C 20% + RuO2 counterparts, which could be regenerated and maintained at the same performance level for subsequent runs by simply replenishing the Zn anode and electrolyte. An alk. water splitting system using the IM-POP-Co-1000 as catalyst for overall water splitting affords a cell voltage as low as 1.60 V at 10 mA cm-2. A self-driven water splitting system powered by the home-made ZABs is demonstrated using IM-POP-Co-1000 as the sole catalyst in 0.1 M KOH, giving a high H2 evolution rate of 0.244 mmol h-1. These novel metal-POPs provides an effective strategy to prepare high-performance POPs for special applications. Therefore, this study shows a promising approach for the utilization of low cost and massive producible POPs as precursor for the preparation of stable and efficient trifunctional electro-catalyst toward clear energy applications.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Category: imidazoles-derivatives

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Lv, Jing team published research in Catalysis Communications in 2020 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Recommanded Product: 1H-Imidazole-2-carbaldehyde

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Recommanded Product: 1H-Imidazole-2-carbaldehyde.

Lv, Jing;Meng, Xiang-Guang;Huang, Hong;Wang, Fei;Yu, Wen-Wang;Wu, Yan-Yan research published 《 Catalytic conversion of fructose to 1,3-dihydroxyacetone under mild conditions》, the research content is summarized as follows. A novel zwitterionic catalyst containing imidazole, carboxyl and amino functional groups was synthesized to catalyze the retro-aldol condensation of fructose. The catalyst displayed efficiently catalytic activity for the conversion of fructose to 1,3-dihydroxyacetone (DHA). The yield of DHA and selectivity of DHA achieved 27.9% and 46.5% after reaction 2 h, resp., at pH 9.5, 85°C. A possible catalytic mechanism was suggested. The charged functional groups on the catalyst exhibited synergistic effect and played role in electron induction and proton transfer, which leaded to a good selectivity of DHA in the conversion of fructose under mild conditions.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Recommanded Product: 1H-Imidazole-2-carbaldehyde

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Maji, Moumita team published research in Inorganic Chemistry in 2021 | 10111-08-7

SDS of cas: 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. SDS of cas: 10111-08-7.

Maji, Moumita;Acharya, Sourav;Bhattacharya, Indira;Gupta, Arnab;Mukherjee, Arindam research published 《 Effect of an Imidazole-Containing Schiff Base of an Aromatic Sulfonamide on the Cytotoxic Efficacy of N,N-Coordinated Half-Sandwich Ruthenium(II) p-Cymene Complexes》, the research content is summarized as follows. Sulfonamides have a broad range of therapeutic applications, which include the inhibition of various isoforms of carbonic anhydrases (CAs). Among the various CA isoforms, CA IX is overexpressed in tumors and regulates the pH of the tumor microenvironment. Herein the authors present five new Ru(II) p-cymene complexes (15) of Schiff base ligands (L1-L4) of 4-(2-aminoethyl)benzenesulfonamide by varying the aldehyde to enhance the selective cytotoxicity toward cancer cells. All of the complexes are stable to aquation for the observed period of 24 h except 1, which aquated within 1 h, but the monoaquated species is stable for 24 h. The two imidazole derivatives, 1 and 2, are cytotoxic to the cancer cells MDA-MB-231 and MIA PaCa-2 but not to the noncancerous cells CHO and MDCK. The enhanced toxicity in hypoxia against MDA-MB-231 may be due to the greater expression of CA IX in hypoxia, as per the immunofluorescence data. The most cytotoxic complexes, 1 and 2, are lipophilic, whereas 35 show high hydrophilicity and are not cytotoxic up to 200μM. Complexes 1 and 2 also show a higher cellular accumulation in MDA-MB-231 than the nontoxic yet solution-stable complex 5. The cytotoxic complexes bind with the model nucleobase 9-ethylguanine but have slow reactivity toward cellular tripeptide glutathione. Both 1 and 2 induce apoptosis by depolarizing the mitochondrial membrane potential and arrest the cell cycle in the SubG1 phase.

SDS of cas: 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Mallo-Abreu, Ana team published research in Journal of Medicinal Chemistry in 2020 | 10111-08-7

Related Products of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Related Products of 10111-08-7.

Mallo-Abreu, Ana;Prieto-Diaz, Ruben;Jespers, Willem;Azuaje, Jhonny;Majellaro, Maria;Velando, Carmen;Garcia-Mera, Xerardo;Caamano, Olga;Brea, Jose;Loza, Maria I.;Gutierrez-de-Teran, Hugo;Sotelo, Eddy research published 《 A Nitrogen-Walk Approach to Explore Bioisosteric Replacements in a Series of Potent A2B Adenosine Receptor Antagonists》, the research content is summarized as follows. A systematic exploration of bioisosteric replacements for furan and thiophene cores in a series of potent A2BAR antagonists was carried out using the nitrogen-walk approach. A collection of 42 novel alkyl 4-substituted-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylates I [R = H, cyclopentyl, Ph, etc.; R1 = Et, i-Pr], which contain 18 different pentagonal heterocyclic frameworks at position 4, was synthesized and evaluated. This study enabled the identication of new ligands that combine remarkable affinity (Ki < 30 nM) and exquisite selectivity. The SAR trends identified were substantiated by a mol. modeling study, based on a receptor-driven docking model and including a systematic free energy perturbation (FEP) study. Preliminary evaluation of the CYP3A4 and CYP2D6 inhibitory activity in optimized ligands evidenced weak and negligible activity resp. The stereospecific interaction between hA2BAR and the eutomer of the most attractive novel antagonist (S)-II (Ki = 3.66 nM) was validated.

Related Products of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Martin, Sebastian team published research in Molecular Imaging and Biology in 2021 | 10111-08-7

Safety of 1H-Imidazole-2-carbaldehyde, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Safety of 1H-Imidazole-2-carbaldehyde.

Martin, Sebastian;Maus, Stephan;Stemler, Tobias;Rosar, Florian;Khreish, Fadi;Holland, Jason P.;Ezziddin, Samer;Bartholomae, Mark D. research published 《 Proof-of-Concept Study of the NOTI Chelating Platform: Preclinical Evaluation of 64Cu-Labeled Mono- and Trimeric c(RGDfK) Conjugates》, the research content is summarized as follows. We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for the preparation of 68Ga- and 64Cu-based radiopharmaceuticals. Based on this platform, the chelator scaffold NOTI-TVA with three addnl. carboxylic acid groups for bioconjugation was synthesized and characterized. The primary aims of this proof-of-concept study were (1) to evaluate if trimeric radiotracers on the basis of the NOTI-TVA 6 scaffold can be developed, (2) to determine if the addnl. substituents for bioconjugation at the non-coordinating NH atoms of the imidazole residues of the building block NOTI influence the metal binding properties, and (3) what influence multiple targeting vectors have on the biol. performance of the radiotracer. The cyclic RGDfK peptide that specifically binds to the αvβ3 integrin receptor was selected as the biol. model system. Two different synthetic routes for the preparation of NOTI-TVA 6 were explored. Three c(RGDfK) peptide residues were conjugated to the NOTI-TVA 6 building block by standard peptide chem. providing the trimeric bioconjugate NOTI-TVA-c(RGDfK)39. Labeling of 9 with [64Cu]CuCl2 was performed manually at pH 8.2 at ambient temperature Binding affinities of Cu-8, the Cu2+ complex of the previously described monomer NODIA-Me-c(RGDfK) 8, and the trimer Cu-9 to integrin αvβ3 were determined in competitive cell binding experiments in the U-87MG cell line. The pharmacokinetics of both 64Cu-labeled conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were determined by small-animal PET imaging and ex vivo biodistribution studies in mice bearing U-87MG xenografts. Depending on the synthetic route, NOTI-TVA 6 was obtained with an overall yield up to 58%. The bioconjugate 9 was prepared in 41% yield. Both conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were radiolabeled quant. at ambient temperature in high molar activities of Am ∼ 20 MBq nmol-1 in less than 5 min. Competitive inhibitory constants IC50 of c(RDGfK) 7, Cu-8, and Cu-9 were determined to be 159.5 ± 1.3 nM, 256.1 ± 2.1 nM, and 99.5 ± 1.1 nM, resp. In small-animal experiments, both radiotracers specifically delineated αvβ3 integrin-pos. U-87MG tumors with low uptake in non-target organs and rapid blood clearance. The trimer [64Cu]Cu-9 showed a ∼ 2.5-fold higher tumor uptake compared with the monomer [64Cu]Cu-8. Functionalization of NOTI at the non-coordinating NH atoms of the imidazole residues for bioconjugation was straightforward and allowed the preparation of a homotrimeric RGD conjugate. After optimization of the synthesis, required building blocks to make NOTI-TVA 6 are now available on multi-gram scale. Modifications at the imidazole groups had no measurable impact on metal binding properties in vitro and in vivo suggesting that the NOTI scaffold is a promising candidate for the development of 64Cu-labeled multimeric/multifunctional radiotracers.

Safety of 1H-Imidazole-2-carbaldehyde, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Lin, Yuqing team published research in Desalination in 2020 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Name: 1H-Imidazole-2-carbaldehyde

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Name: 1H-Imidazole-2-carbaldehyde.

Lin, Yuqing;Wu, Hao-Chen;Shen, Qin;Zhang, Lei;Guan, Kecheng;Shintani, Takuji;Tung, Kuo-Lun;Yoshioka, Tomohisa;Matsuyama, Hideto research published 《 Custom-tailoring metal-organic framework in thin-film nanocomposite nanofiltration membrane with enhanced internal polarity and amplified surface crosslinking for elevated separation property》, the research content is summarized as follows. A polyamide (PA) thin-film nanocomposite (TFN) membrane embedded with post-synthetically functionalized metal-organic framework (MOF) nanofillers of imidazole-2-carbaldehyde (ICA) decorated UiO-66-NH2 nanofillers (ICA_d_UiO-66-NH2) was developed using the interfacial polymerization method. The ICA_d_UiO-66-NH2 nanofiller couples a surface water-capturing ICA decoration, facilitating the rapid transport of water mols. owing to the enhanced internal polarity, while achieving an amplified crosslinking between the terminal amine groups of ICA and trimesoyl chloride, enabling the perfect incorporation of MOF nanofillers within the PA matrix. The resultant ICA_d_UiO-66-NH2@PA TFN membrane with elevated separation property performed comparably high water permeance of 9.4 l m-2 h-1 bar-1 (achieving a nearly 2-fold increase from the initial value of the thin-film composite membrane), and a favorable rejection ratio of 97.4% (Na2SO4). Owing to the unique hierarchical surface microstructure embedded with the intrinsically hydrophilic ICA_d_UiO-66-NH2 nanofillers, the newly-developed TFN membrane exhibited superior antifouling properties. Furthermore, the ICA_d_UiO-66-NH2@PA TFN membrane also retained excellent reusability and durability without significant compromise even after long-term salt, and acid/alkali treatments. Overall, this work provides an insight into the embedding of different functionalized nanofillers inside TFN membranes with elevated separation properties.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Name: 1H-Imidazole-2-carbaldehyde

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Ling, Danping team published research in Journal of Materials Chemistry B: Materials for Biology and Medicine in 2020 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Application of C4H4N2O

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Application of C4H4N2O.

Ling, Danping;Li, Haihong;Xi, Wensong;Wang, Zhuo;Bednarkiewicz, Artur;Dibaba, Solomon T.;Shi, Liyi;Sun, Lining research published 《 Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and pH-responsive dual-drug delivery》, the research content is summarized as follows. Developing multifunctional nanocomposites for a pH-responsive controlled dual-drug delivery is still a huge challenge. Herein, we report a gentle and simple method for growing metal-organic frameworks (MOFs) that can load two anticancer drugs, namely DOX and 5-FU (doxorubicin and 5-fluorouracil), on the surface of upconversion nanoparticles (UCNPs) by the reactions of Schiff bases and electrostatic adsorption. The resulting pH-responsive UCMOFs@D@5 nanosystem showed effective dual-drug release by the cleavage of chem. bonds and the disruption of the MOF structure under acidic conditions. Moreover, the final nanosystem UCMOFs@D@5 showed much higher cytotoxicity in comparison with UCMOFs@D and UCMOFs@5, which loaded only one kind of drug, resp., after being incubated with human cervical cancer (HeLa) cells, indicating that Dox and 5-FU released from the final nanosystem had synergistic effects on cytotoxicity. Cellular uptake studies showed that UCMOFs@D@5 was well uptaken by HeLa cells and has potential for bioimaging applications in intracellular fluorescence imaging with high-contrast, and is beneficial for the intracellular localization of anti-cancer drugs. In addition, the nanosystem can be successfully applied in T1-weighted magnetic resonance imaging. Therefore, we developed a visualized tracking agent combined with MOFs to load two anticancer drugs to form a nanosystem for diagnosis and synergistic treatment, thus achieving the bioimaging and stimulation-responsive dual-drug release.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Application of C4H4N2O

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Liu, Chenguang team published research in Angewandte Chemie, International Edition in 2021 | 10111-08-7

Formula: C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Formula: C4H4N2O.

Liu, Chenguang;Wang, Mingyang;Liu, Shihan;Wang, Yujie;Peng, Yong;Lan, Yu;Liu, Qiang research published 《 Manganese-Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π-π Interaction**》, the research content is summarized as follows. The non-noble metal-catalyzed asym. hydrogenation of N-heteroaromatics, quinolines, is reported. A new chiral pincer manganese catalyst showed outstanding catalytic activity in the asym. hydrogenation of quinolines, affording high yields and enantioselectivities (up to 97% ee). A turnover number of 3840 was reached at a low catalyst loading (S/C=4000), which is competitive with the activity of most effective noble metal catalysts for this reaction. The precise regulation of the enantioselectivity were ensured by a π-π interaction.

Formula: C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Liu, Chenguang team published research in Angewandte Chemie, International Edition in 2022 | 10111-08-7

Computed Properties of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Computed Properties of 10111-08-7.

Liu, Chenguang;Wang, Mingyang;Xu, Yihan;Li, Yibiao;Liu, Qiang research published 《 Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles》, the research content is summarized as follows. A Mn-catalyzed AH of 3H-indoles e.g., 2,3,3-trimethyl-3H-indole with excellent yields and enantioselectivities was reported. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters e.g., 3,3-dimethyl-2-phenyl-3H-indole. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the ppm (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.

Computed Properties of 10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Liu, Lihua team published research in Sensors and Actuators, B: Chemical in 2021 | 10111-08-7

Product Details of C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Product Details of C4H4N2O.

Liu, Lihua;Dai, Jianan;Ji, Yuan;Shen, Baoxing;Zhang, Xing;Linhardt, Robert J. research published 《 Detection of protamine and heparin using a promising metal organic frameworks based fluorescent molecular device BZA-BOD@ZIF-90》, the research content is summarized as follows. Herein, we designed a BODIPY-based probe (BZA-BOD@ZIF-90) with good stability through the encapsulation of metal-organic frameworks (MOFs). BZA-BOD@ZIF-90 can selectively detect protamine based on an aggregation-induced emission (AIE) effect. In the present strategy, the designed BZA-BOD@ZIF-90 showed excellent fluorescence response to protamine with a low detection limit of 0.07 μg/mL and the detection was not disturbed by other possible competing substances. Compared with previous methods, BZA-BOD designed by this method is simpler to obtain, and also can achieve sensitive and accurate determination of protamine. Subsequently, the nanocomposite BZA-BOD@ZIF-90 was successfully applied to detect protamine spiked in human serum. In addition, due to the strong binding effect of heparin on protamine, when heparin was added to the complex, the fluorescence intensity of the BZA-BOD@ZIF-90 weakened, thus, it can also be utilized for heparin detection. The medical application of protamine and heparin suggests that this fluorescent mol. device has prospects for certain clin. applications.

Product Details of C4H4N2O, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem