An, Rong’s team published research in Physical Chemistry Chemical Physics in 2020 | CAS: 174501-65-6

3-Butyl-1-methyl-1H-imidazol-3-ium tetrafluoroborate(cas: 174501-65-6) is a member of lonic liquids. A multidisciplinary study on lonic liquids is emerging, including chemistry, materials science, chemical engineering, and environmental science. More specifically, some important fundamental viewpoints are now different from the original concepts, as insights into the nature of lonic liquids become deeper. For example, the physicochemical properties of lonic liquids are now recognized as ranging broadly from the oft quoted “nonvolatile, non-flammable, and air and water stable” to those that are distinctly volatile, flammable, and unstable. COA of Formula: C8H15BF4N2

《Controlling the nanoscale friction by layered ionic liquid films》 was written by An, Rong; Qiu, Xiuhua; Shah, Faiz Ullah; Riehemann, Kristina; Fuchs, Harald. COA of Formula: C8H15BF4N2 And the article was included in Physical Chemistry Chemical Physics in 2020. The article conveys some information:

The nanofriction coefficient of ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), on the surfaces of mica and graphite was investigated using at. force microscopy (AFM). A pronounced layered spatial distribution was found in the IL film formed on the solid substrates and can be divided into 3 well distinguishable regions exhibiting different phys. properties with increasing distance from the substrate. We found that the friction coefficient (μ) increases monotonically as the layering thickness decreases, no matter what the thickness of the bulk IL is. This suggests that the layering assembled IL at solid surfaces is more important than the bulk phase in determining the magnitude of the nanoscale friction. The increase in the friction coefficient as the layering thickness decreases is most likely attributed to the assembled ordered IL layers closer to the substrate surfaces having a greater activation barrier for unlocking the surfaces to allow shear. In the experimental materials used by the author, we found 3-Butyl-1-methyl-1H-imidazol-3-ium tetrafluoroborate(cas: 174501-65-6COA of Formula: C8H15BF4N2)

3-Butyl-1-methyl-1H-imidazol-3-ium tetrafluoroborate(cas: 174501-65-6) is a member of lonic liquids. A multidisciplinary study on lonic liquids is emerging, including chemistry, materials science, chemical engineering, and environmental science. More specifically, some important fundamental viewpoints are now different from the original concepts, as insights into the nature of lonic liquids become deeper. For example, the physicochemical properties of lonic liquids are now recognized as ranging broadly from the oft quoted “nonvolatile, non-flammable, and air and water stable” to those that are distinctly volatile, flammable, and unstable. COA of Formula: C8H15BF4N2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem