Klein, Hannah L.; Ang, Kenny K. H.; Arkin, Michelle R.; Beckwitt, Emily C.; Chang, Yi-Hsuan; Fan, Jun; Kwon, Youngho; Morten, Michael J.; Mukherjee, Sucheta; Pambos, Oliver J.; el Sayyed, Hafez; Thrall, Elizabeth S.; Vieira-da-Rocha, Joao P.; Wang, Quan; Wang, Shuang; Yeh, Hsin-Yi; Biteen, Julie S.; Chi, Peter; Heyer, Wolf-Dietrich; Kapanidis, Achillefs N.; Loparo, Joseph J.; Strick, Terence R.; Sung, Patrick; Van Houten, Bennett; Niu, Hengyao; Rothenberg, Eli published the artcile< Guidelines for DNA recombination and repair studies: mechanistic assays of DNA repair processes>, Category: imidazoles-derivatives, the main research area is aminopurine DNA recombination repair mutagenesis review; DNA breaks; DNA helicases; DNA repair centers; DNA repair synthesis; DNA resection; DSBs; FRET; PALM; chromatin dynamics; chromosome rearrangements; crossovers; double strand break repair; endonuclease protection assay; fluorescent proteins; genome instability; gross chromosome rearrangements; homologous recombination; mismatch repair; nonhomologous end joining; nucleotide excision repair; photoactivated fluorescent proteins; recombinase filament assembly; single-molecule; single-particle tracking; structure-selective endonucleases; super resolution; synthesis-dependent strand annealing; transcription coupled repair.
A review. Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytol. studies that detect changes at the single-cell level. Single mol. assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochem. assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Microbial Cell published new progress about DNA repair. 452-06-2 belongs to class imidazoles-derivatives, and the molecular formula is C5H5N5, Category: imidazoles-derivatives.
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem