Hata, Shinichi team published research on Diamond and Related Materials in 2021 | 1739-84-0

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Name: 1,2-Dimethyl-1H-imidazole.

Hata, Shinichi;Yamaguchi, Yuya;Nakata, Riku;Kametani, Koudai;Du, Yukou;Shiraishi, Yukihide;Toshima, Naoki research published 《 Durable n-type carbon nanotubes double-doped with 1,8-diazabicyclo[5.4.0]undec-7-ene and polyamidoamine dendrimers》, the research content is summarized as follows. Owing to their well-known instability in air, organic n-type semiconductors must be doped to protect them from moisture and oxygen. Such doping is crucial for producing soft flexible devices that can convert large amounts of low-temperature waste heat into elec. energy. Herein, we report the preparation and thermoelec. properties of drop-cast carbon nanotube (CNT) films double-doped with the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) superbase and electron-donating polyamidoamine dendrimers (PAMAM). Our method not only enhances the chem. stabilities of the electron carriers but also is favorable for large-scale applications. Despite being prepared in aqueous solvents, the p-type CNTs were found to exhibit n-type behavior, irresp. of the pKa of the electron-donating organic mol. In particular, the addition of DBU resulted in the largest thermoelec. conversion output factor (Seebeck coefficient and power factor of -32.2μV K-1 and 261μW m-1 K-2, resp.). The inclusion of PAMAM as a dispersant and secondary dopant significantly prolonged the stability of the n-type behavior of DBU-doped CNTs in air at 80°C from approx. 15 days for an undoped system to more than 30 days. Surprisingly, after 30 days, the thermoelec. conversion power factor of the doped system was found to be approx. 20% higher than that of the undoped system, confirming the excellent performance of hybrid thermoelec. material with a PAMAM shell/DBU-doped CNT core structure. In addition, its n-type doping process does not require organic solvents. These results create new avenues for the development of atmospherically stable drop-cast n-type CNT films.

Name: 1,2-Dimethyl-1H-imidazole, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem