El Seoud, Omar A. team published research on Journal of Molecular Liquids in 2021 | 1739-84-0

Computed Properties of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Computed Properties of 1739-84-0.

El Seoud, Omar A.;Bioni, Thais A.;Dignani, Marcella T. research published 《 Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: Quantification of the relative importance of hydrogen bonding and hydrophobic interactions》, the research content is summarized as follows. We studied the dissolution of microcrystalline cellulose (MCC) in mixtures of DMSO with 32 ionic liquids (ILs), at a fixed temperature (70°C) and mole fraction of DMSO (χDMSO = 0.6). Under these conditions, employing a recommended dissolution protocol, MCC dissolved in 19 IL-DMSO mixtures In order to access quant. the relative importance (to biopolymer dissolution) of cellulose-solvent interactions, we correlated the mass fraction of dissolved cellulose (MCC-m%) with physicochem. properties of these mixtures The solvent descriptors that gave the best correlations are Lewis acidity and Lewis basicity (calculated from the UV-Vis spectra of solvatochromic probes), the molar volume of the IL, and the Lorentz-Lorenz refractive index function of the IL-DMSO mixtures This result is similar to that observed when solvent empirical polarities of these binary mixtures were correlated with the same descriptors. The multi-parameter correlations quantify, for the first time, the relative importance of cellulose-solvent interactions. Our results agree with the established opinion that an efficient cellulose solvent should disrupt the inter- and intramol. hydrogen bonding in cellulose, and the hydrophobic interactions present due to the amphiphilic nature of the biopolymer.

Computed Properties of 1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem