Chemistry Milestones Of 3724-19-4

This compound(3-Pyridinepropionic acid)Electric Literature of C8H9NO2 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 3-Pyridinepropionic acid, is researched, Molecular C8H9NO2, CAS is 3724-19-4, about The 3-(3-pyridine)propionyl anchor group for protease-catalyzed resolutions: p-toluenesulfinamide and sterically hindered secondary alcohols.Electric Literature of C8H9NO2.

Compared to an acetyl acyl group, the 3-(3-pyridine)propionyl group increases substrate binding to many proteases and substrate solubility in water, thereby increasing the rates of protease-catalyzed reactions. For example, proteases reacted up to six hundred-fold faster with the 3-(3-pyridine)propionyl ester of 1-phenylethanol than with the corresponding acetate ester. In addition, the 3-(3-pyridine)propionyl group enables a simple, mild acid extraction to sep. the remaining starting material and product. To demonstrate the synthetic usefulness of this strategy, we resolved multi-gram quantities of (R)- and (S)-p-toluenesulfinamide with α-chymotrypsin and gram quantities of (R)- and (S)-2,2-dimethylcyclopentanol with subtilisin Carlsberg. The 3-(3-pyridyl)propionyl group was better for these resolutions than the corresponding acetate or dihydrocinnamate because it decreased the reaction time due to increased reactivity, decreased the reaction volume due to increased substrate solubility and enabled purification without chromatog. Mol. modeling suggests the enantioselectivity of α-chymotrypsin toward (R)-p-toluenesulfinamide is high (E = 52) because of a favorable hydrophobic interaction between the p-tolyl group of the fast-reacting (R)-enantiomer and leaving group pocket. The enantioselectivity of subtilisin Carlsberg toward (S)-2,2-dimethylcyclopentanol is high (E = 43) because the large substituent (the 2,2-di-Me quaternary carbon) of the slow-reacting (R)-enantiomer cannot fit in the S1′ leaving group pocket.

This compound(3-Pyridinepropionic acid)Electric Literature of C8H9NO2 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem