Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: tert-Butyl 2-cyanoacetate, is researched, Molecular C7H11NO2, CAS is 1116-98-9, about Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides.SDS of cas: 1116-98-9.
The development of efficient methods, particularly catalytic and enantioselective processes, for the construction of all-carbon quaternary stereocentres is an important (and difficult) challenge in organic synthesis due to the occurrence of this motif in a range of bioactive mols. One conceptually straightforward and potentially versatile approach is the catalytic enantioconvergent substitution reaction of a readily available racemic tertiary alkyl electrophile by an organometallic nucleophile; however, examples of such processes are rare. Here we demonstrate that a nickel-based chiral catalyst achieves enantioconvergent couplings of a variety of tertiary electrophiles (cyclic and acyclic α-halocarbonyl compounds) with alkenylmetal nucleophiles to form quaternary stereocentres with good yield and enantioselectivity under mild conditions in the presence of a range of functional groups. These couplings, which probably proceed via a radical pathway, provide access to an array of useful families of organic compounds, including intermediates in the total synthesis of two natural products, (-)-eburnamonine and madindoline A.
If you want to learn more about this compound(tert-Butyl 2-cyanoacetate)SDS of cas: 1116-98-9, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1116-98-9).
Reference:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem