Reference of 2620-76-0, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 2620-76-0 as follows.
Example 5In Example 5, an example of a synthesis method of 4-(9H-carbazol-9-yl)-4′-(1-phenyl-1H-benzo[d]imidazol-2-yl)triphenylamine (abbreviation: YGABIm) which is represented by a structural formula (227) will be described. A synthesis scheme is shown in the following (E5-1). In a 100 mL three-necked flask were placed 1.0 g (2.7 mmol) of 2-(4-bromophenyl)-1-phenyl-1H-benzo[d]imidazole, 0.96 g (2.7 mmol) of 4-(carbazol-9-yl)diphenylamine (abbreviation: YGA), 0.60 g (6.3 mmol) of sodium tert-butoxide, and 0.050 g (0.086 mmol) of bis(dibenzylideneacetone)palladium(0), and the atmosphere in the flask was replaced with nitrogen.To this mixture were added 15 mL of toluene and 0.050 mL of a 10percent hexane solution of tri(tert-butyl)phosphine. This mixture was stirred at 80° C. for 5 hours. After the stirring, toluene was added to this mixture, and this suspension was subjected to suction filtration through Celite to give a filtrate. The obtained filtrate was washed with water, a saturated sodium hydrogen carbonate solution, and a saturated saline solution in this order. Then, the organic layer and the aqueous layer were separated, and magnesium sulfate was added to dry the organic layer. This mixture was subjected to suction filtration so that the magnesium sulfate was removed to give a filtrate. The obtained filtrate was concentrated to give a compound. The obtained compound was purified by silica gel column chromatography. The silica gel column chromatography was performed by, first, using toluene as a developing solvent, and then using a mixed solvent of toluene and ethyl acetate (toluene:ethyl acetate=5:1) as a developing solvent. The obtained fraction was concentrated to give a compound. The obtained compound was recrystallized with a mixed solvent of chloroform and hexane to give 1.2 g of a light yellow powdered solid in a yield of 74percent.Then, 1.2 g of the obtained solid was sublimated and purified by train sublimation. The sublimation purification was performed under a reduced pressure of 2.7 Pa, with a flow rate of argon at 5 mL/min, at 261° C., and for 14 hours. After the sublimation purification, 1.0 g of a target substance was obtained in a yield of 83percent.By a nuclear magnetic resonance (NMR) method, this compound was confirmed to be 4-(9H-carbazol-9-yl)-4′-(1-phenyl-1H-benzo[d]imidazol-2-yl)triphenylamine (abbreviation: YGABIm), which was a target substance.1H NMR data of the obtained compound is shown below: 1H NMR (CDCl3, 300 MHz): delta=7.30-7.56 (m, 27H), 7.87 (d, J=8.3 Hz, 1H), 8.13 (d, J=7.8 Hz, 2H)
According to the analysis of related databases, 2620-76-0, the application of this compound in the production field has become more and more popular.
Reference:
Patent; Semiconductor Energy Laboratory Co., Ltd.; US8329917; (2012); B2;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem