Osti, Naresh C. et al. published their research in Journal of the Electrochemical Society in 2019 | CAS: 404001-48-5

3-Dodecyl-1-methyl-1H-imidazol-3-ium bis((trifluoromethyl)sulfonyl)amide (cas: 404001-48-5) belongs to imidazole derivatives. Many natural products, especially alkaloids, contain the imidazole ring. These imidazoles share the 1,3-C3N2 ring but feature varied substituents. Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division.Product Details of 404001-48-5

Cation molecular structure affects mobility and transport of electrolytes in porous carbons was written by Osti, Naresh C.;Dyatkin, Boris;Gallegos, Alejandro;Voneshen, David;Keum, Jong K.;Littrell, Ken;Zhang, Pengfei;Dai, Sheng;Wu, Jianzhong;Gogotsi, Yury;Mamontov, Eugene. And the article was included in Journal of the Electrochemical Society in 2019.Product Details of 404001-48-5 This article mentions the following:

We examined the electrosorption and ion dynamics of imidazolium-based room temperature ionic liquids (RTILs) having short (3-carbon, C3mim+) and long (12-carbon, C12mim+) cations, i.e., 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C3mimTFSI) and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C12mimTFSI), confined in ordered mesoporous carbon (OMC) and analyzed the influence of the cation alkyl chain length on the ion dynamics and the capacitive behavior using electrochem. measurements together with quasi-elastic neutron scattering (QENS) observations and classical d. functional theory (cDFT) computations. Electrochem. tests highlighted the significant influence of specific applied potentials on accumulated charge storage densities and on the limits of saturation of larger electrolytes in the pores. Computational analyses corroborated these findings and predicted a 16% increase in the capacitance of the smaller-cation electrolyte under high applied potentials. However, QENS experiments revealed a behavior of decoupling of alkyl chain dynamics from the ring in electrolytes with larger ions. cDFT calculations identified d. spikes for C12mim+ away from the pore walls to further corroborate this unique behavior. Our insights into chain length-dependent dynamics and electrosorption in complex electrolyte-electrode systems deepen fundamental understanding of confined RTIL electrolyte behavior in the porous carbon electrodes. In the experiment, the researchers used many compounds, for example, 3-Dodecyl-1-methyl-1H-imidazol-3-ium bis((trifluoromethyl)sulfonyl)amide (cas: 404001-48-5Product Details of 404001-48-5).

3-Dodecyl-1-methyl-1H-imidazol-3-ium bis((trifluoromethyl)sulfonyl)amide (cas: 404001-48-5) belongs to imidazole derivatives. Many natural products, especially alkaloids, contain the imidazole ring. These imidazoles share the 1,3-C3N2 ring but feature varied substituents. Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division.Product Details of 404001-48-5

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem