Yang, Wenjun team published research in Angewandte Chemie, International Edition in 2020 | 250285-32-6

Application In Synthesis of 250285-32-6, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Application In Synthesis of 250285-32-6.

Yang, Wenjun;Ling, Bo;Hu, Bowen;Yin, Haolin;Mao, Jianyou;Walsh, Patrick J. research published 《 Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Umpolung 1,4-Addition of Aryl Iodides to Enals》, the research content is summarized as follows. An umpolung 1,4-addition of aryl iodides to enals promoted by cooperative (terpy)Pd/NHC catalysis was developed that generates various bioactive β,β-diaryl propanoate derivatives This system is not only the first reported palladium-catalyzed arylation of NHC-bound homoenolates but also expands the scope of NHC-induced umpolung transformations. A diverse array of functional groups such as esters, nitriles, alcs., and heterocycles are tolerated under the mild conditions. This method also circumvents the use of moisture-sensitive organometallic reagents.

Application In Synthesis of 250285-32-6, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Yang, Mengxue team published research in Frontiers in cellular and infection microbiology in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Synthetic Route of 60-56-0

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Synthetic Route of 60-56-0.

Yang, Mengxue;Zheng, Xiaodi;Wu, Yueyue;Zhang, Rui;Yang, Qian;Yu, Zhiyan;Liu, Jun;Zha, Bingbing;Gong, Qihai;Yang, Bo;Sun, Bowen;Zeng, Miao research published 《 Preliminary Observation of the Changes in the Intestinal Flora of Patients With Graves’ Disease Before and After Methimazole Treatment.》, the research content is summarized as follows. Immune dysfunction caused by environmental factors plays an important role in the development of Graves’ disease (GD), and environmental factors are closely related to the intestinal flora. Our previous study showed significant changes in the intestinal flora in GD patients compared with healthy volunteers. This study analyzed the relationships between changes in the intestinal flora, thyroid function and relevant thyroid antibodies in GD patients before and after methimazole treatment. The subjects were divided into the UGD group (18 newly diagnosed GD patients), the TGD group (10 GD patients with normal or approximately normal thyroid function after methimazole treatment) and the NC group (11 healthy volunteers). Their fresh stool samples were sent for 16S rRNA gene amplification and Illumina platform sequencing. The correlations of the relative abundance of Bifidobacterium with the levels of TRAb, TgAb and TPOAb in the NC group and the UGD group were analyzed. A total of 1,562,445 high-quality sequences were obtained. In the UGD group, the abundances of Bifidobacterium and Collinsella were higher than that in the NC group; Bacteroides abundance in the TGD group was higher than that in the NC group, while Prevotella and Dialister abundances were lower than that in the NC group; Prevotella and Collinsella abundances in the UGD group were higher than that in the TGD group. The predominant abundance distribution of Bifidobacteriaceae in the UGD group at the family level was superior to that in the NC group. The abundance of Bifidobacterium was positively correlated with the levels of TRAb, TgAb, and TPOAb. The biological diversity of the intestinal flora was reduced in GD patients. After methimazole treatment, the composition of the intestinal flora was significantly altered. The change in Bifidobacterium abundance was positively correlated with TRAb, TgAb and TPOAb, suggesting that it might be related to the immune mechanism of GD. The results of this study may deepen our understanding of the pathogenesis of GD and provide a new idea for the treatment of GD.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Synthetic Route of 60-56-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Yang, Hongpeng team published research in ChemistrySelect in 2022 | 60-56-0

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Application In Synthesis of 60-56-0

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Application In Synthesis of 60-56-0.

Yang, Hongpeng;Chen, Lei;Zhang, Shouguo;Wang, Gang;Chen, Tingting;Xu, Jing;Peng, Tao;Wang, Lin;Hu, Liming research published 《 Synthesis and Application of a Thiol Photolabile Protecting Group》, the research content is summarized as follows. A photolabile protecting group (PLPG) for thiol that can be rapidly photolyzed by irradiation at 365 nm to release thiol groups within 100 s. was successfully designed and synthesized. The photolytic reaction has mild conditions and avoids acid cleavage, leading to good yields with no side reactions as validated by HPLC. The PLPG has good acid/alkali tolerance.

60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., Application In Synthesis of 60-56-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Yan, Wenjun team published research in ACS Sensors in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Application of C5H8N2

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Application of C5H8N2.

Yan, Wenjun;Xu, Huoshu;Ling, Min;Zhou, Shiyu;Qiu, Tong;Deng, Yanjun;Zhao, Zhidong;Zhang, Erpan research published 《 MOF-Derived Porous Hollow Co3O4@ZnO Cages for High-Performance MEMS Trimethylamine Sensors》, the research content is summarized as follows. Trimethylamine (TMA) sensors based on metal oxide semiconductors (MOS) have drawn great attention for real-time seafood quality evaluation. However, poor selectivity and baseline drift limit the practical applications of MOS TMA sensors. Engineering core@shell heterojunction structures with accumulation and depletion layers formed at the interface is regarded as an appealing way for enhanced gas sensing performances. Herein, we design porous hollow Co3O4@ZnO cages via a facile ZIF-67@ZIF-8-derived approach for TMA sensors. These sensors demonstrate great TMA resistive sensing performance (linear response at moderate TMA concentrations (<33 ppm)), and a high sensitivity of ~41 is observed when exposed to 33 ppm TMA, with a response/recovery time of only 3/2 s. This superior performance benefits from the Co3O4@ZnO porous hollow structure with maximum heterojunctions and high surface area. Furthermore, great capacitive TMA sensing with linear sensitivity over the full testing concentration range (0.33-66 ppm) and better baseline stability were investigated. A possible capacitive sensing mechanism of TMA polarization was proposed. For practical usage, a portable sensing prototype based on the Co3O4@ZnO sensor was fabricated, and its satisfactory sensing behavior further confirms the potential for real-time TMA detection.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Application of C5H8N2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Yadav, Manoj Kumar team published research in Journal of Macromolecular Science, Part A: Pure and Applied Chemistry in 2020 | 10111-08-7

Recommanded Product: 1H-Imidazole-2-carbaldehyde, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Recommanded Product: 1H-Imidazole-2-carbaldehyde.

Yadav, Manoj Kumar;Pokhrel, Shanta;Yadav, Paras Nath research published 《 Novel chitosan derivatives of 2-imidazolecarboxaldehyde and 2-thiophenecarboxaldehyde and their antibacterial activity》, the research content is summarized as follows. Chitosan was synthesized from chitin; extracted from prawn shells’ powder via deacetylation and physicochem. properties were studied. Novel chitosan derivatives of 2-imidazolecarboxaldehyde and 2-thiophenecarboxaldehyde were synthesized by refluxing equimolar quantities of resp. aldehyde with chitosan. These functionalized chitosan derivatives were characterized by Fourier transform IR (FTIR), 13C-NMR (13C-NMR) spectroscopy, elemental anal., X-ray diffraction (XRD), thermogravimetric anal. (TGA) and DTA (DTA) and their antibacterial activity was explored. Chitosan derivative of 2-thiophenecarboxaldehyde was found active against Escherichia coli.

Recommanded Product: 1H-Imidazole-2-carbaldehyde, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Xue, Lei team published research in Journal of Alloys and Compounds in 2021 | 10111-08-7

Category: imidazoles-derivatives, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Category: imidazoles-derivatives.

Xue, Lei;Zhang, Aiai;Wu, Jinfang;Wang, Qi;Liu, Yang;Zhao, Yuansong;Liu, Shangpeng;Liu, Ze;Li, Ping;Zeng, Shanghong research published 《 Surface modification and reconstruction of ZnO hollow microspheres for selective electroreduction of CO2 to CO》, the research content is summarized as follows. Surface chem. can be modified by introducing another component on the surface of catalyst due to the regulation of configuration and electronic properties. Herein, the nanostructured ZnO hollow microspheres were fabricated for selective CO2 reduction to CO. The addition of CuO weakens the strength of adjacent Zn-O bond and improves the formation of more zero-valence Zn. Small CuO entities can provide the active sites for CO2 adsorption, and the presence of surface defects due to Zn2+ reduction could enhance initial dissociation from CO2 to CO. More interestingly, the 3CuO/ZnO catalyst underwent reconstruction during electrocatalysis, and multi-shelled hollow spheres evolved into a thin flaky structure. The extended surface area of flaky morphol. enhances the catalytic stability despite the occurrence of ZnO reduction This study highlights the importance of surface modification for CO2 selective reduction to CO but also provides some insights on reconstruction during electrochem. reduction of CO2.

Category: imidazoles-derivatives, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., 10111-08-7.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Xu, Yu team published research in European Journal of Medicinal Chemistry in 2020 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Electric Literature of 10111-08-7

Imidazole based anticancer drug find applications in cancer chemotherapy. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Electric Literature of 10111-08-7.

Xu, Yu;Zhang, Xiu-Juan;Li, Wen-Bo;Wang, Xing-Rong;Wang, Shuai;Qiao, Xue-Peng;Chen, Shi-Wu research published 《 Design, synthesis and biological evaluation of indole-2-one derivatives as potent BRD4 inhibitors》, the research content is summarized as follows. A series of indole-2-one derivatives I (R1 = cyclopropyl, cyclopentyl, 4,5-dihydro-1H-imidazol-2-yl, etc.; R2 = H, Me, cyclopropyl, furan-2-yl; R3 = 4-methoxyphenyl, 2,5-difluorophenyl, naphthalen-1-yl, etc.; R1R2 = -(CH2)3-, -(CH2)5-) and II (R4 = 2-methoxyphenyl, cyclohexyl) through scaffold hopping drug design has been designed and synthesized. Most of the compounds showed potent BRD4 inhibitory activities and anti-proliferation activities in cancer cell lines. Especially, compound I (R1 R2 = -(CH2)3-; R3 = 2-methoxyphenyl) (II) exhibited excellent BRD4 inhibitory activities (BD1 IC50 = 19 nM, BD2 IC50 = 28 nM) and anti-proliferation potency with IC50 values of 4.75μM and 1.35μM in HT-29 and HL-60 cells, resp. Addnl., docking studies showed that the hydrophobic pocket next to KAc region and WPF shelf were critical to the activity of the compound Compound II could arrest the cell-cycle progression of HT-29 cells into the G1 phase and reduce the expression of c-Myc. Moreover, compound II exhibited favorable oral pharmacokinetic properties. All the results demonstrated that compound II was a potent BRD4 inhibitor and had merely potential for colon cancer treatment.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Electric Literature of 10111-08-7

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Xu, Wei team published research in Letters in Organic Chemistry in 2020 | 3034-50-2

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, COA of Formula: C4H4N2O

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. COA of Formula: C4H4N2O.

Xu, Wei;Yao, Hao;Zhang, Xing;Peng, Changjiang;Li, Ling;Zhang, Yuanyuan;Qian, Shan;Yang, Lingling;Wang, Zhouyu research published 《 K2CO3 Promoted Cascade Reaction for the Preparation of 1H-Imidazol-4- yl-1-amine Derivatives》, the research content is summarized as follows. A K2CO3 promoted efficient one pot two-step method for the preparation of 1H-imidazol-4- yl-1-amine derivatives I [R1 = Et, Ph, 4-MeC6H4, etc.; R2 = Ph, 2-ClC6H4, Bn, etc.] was developed. A series of secondary amines with an imidazole group were obtained with 56%-91% yields by the K2CO3 promoted amination of acetates and nitrogen deprotection of the imidazole process.

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, COA of Formula: C4H4N2O

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Xu, Li-Yan team published research in Applied Organometallic Chemistry in 2021 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Quality Control of 10111-08-7

Imidazole derivatives generally have good solubility in protic solvents. Simple imidazole derivatives, such as 1H-imidazole, 2-methyl-1H-imidazole, and 1,2-dimethylimidazole, have very high solubility in water. 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. Their solubility in alcohol is lower than that in water and decreases with increasing molecular weight of the alcohols . Quality Control of 10111-08-7.

Xu, Li-Yan;Chai, Yong-Mei;Li, Cheng-Guo;Chai, Lan-Qin research published 《 Co(II) and Cd(II) complexes with imidazole-2-carboxaldehyde groups: spectroscopic, antibacterial, Hirshfeld surfaces analyses, and TD/DFT calculations》, the research content is summarized as follows. Two complexes [Co(L)2·2CH3OH]2·(NO3)4 (1) and [Cd(L)2(NO3)2] (2) (L = 2-(2-imidazolyl)-4-methyl-1,2-dihydroquinazoline-3-oxide) were synthesized by natural evaporation of Co (II)/Cd (II) nitrate with a new heterocyclic ligand. The metal complexes are characterized by elemental anal., spectroscopy, and X-ray crystallog. In the crystal structures, Co(II) complex 1 was in a six-coordinated coordination environment and constituted an infinite 1-D chain, 2-D network, Meter-shaped 3-D supramol. framework, while Cd(II) complex 2 assembled into an infinite 1-D, wave-like 2-D, and dragonfly-shaped 3-D skeleton. Specifically, nitrate ions were present as a dissociated group in complex 1, whereas complex 2 was involved in the coordination. Moreover, Cd(II) complex exhibited different fluorescence behaviors in diverse solvents. Remarkably, all the compounds showed perceptible antibacterial activity against Gram-pos. and Gram-neg. bacteria. Furthermore, the electrostatic potential (ESP) calculations were utilized to analyze electrophilic and nucleophilic attack sites on the mol., which verified the existence of hydrogen bonds in the optimized crystal structure. In addition, the structural features of metal complexes have been remarkably rationalized, and the overall trends obtained in the exptl. values have been resoundingly remake by TD/DFT calculations The detailed Hirshfeld surface anal. and fingerprint plots yielded a comparative picture of the mode of non-covalent interactions.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Quality Control of 10111-08-7

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Xu, Chang-Jiang team published research in Synthesis in 2020 | 3034-50-2

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Formula: C4H4N2O

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Formula: C4H4N2O.

Xu, Chang-Jiang;Du, Wei;Albrecht, Lukasz;Chen, Ying-Chun research published 《 Lewis Basic Amine Catalyzed Aza-Michael Reaction of Indole- and Pyrrole-3-carbaldehydes》, the research content is summarized as follows. 3-Formyl substituted indoles or pyrroles can form HOMO-raised dearomative aza-dienamine-type intermediates with secondary amines, which can undergo direct aza-Michael addition to β-trifluoromethyl enones to afford N-alkylated products efficiently, albeit with low to fair enantioselectivity. In addition, similar asym. aza-Michael additions of these heteroarenes and crotonaldehyde are realized under dual catalysis of chiral amines, and the adducts are obtained with moderate to good enantioselectivity.

3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, Formula: C4H4N2O

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem