Zhou, Shengyang team published research in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2021 | 3034-50-2

Computed Properties of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole based anticancer drug find applications in cancer chemotherapy. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Computed Properties of 3034-50-2.

Zhou, Shengyang;Guan, Jiayu;Li, Ziqin;Huang, Lei;Zheng, Jifu;Li, Shenghai;Zhang, Suobo research published 《 Alkaline polymers of intrinsic microporosity: high-conduction and low-loss anhydrous proton exchange membranes for energy conversion》, the research content is summarized as follows. The development of anhydrous high-temperature proton-exchange membranes (HT-PEMs) combining durable high proton conductivity and modest mech. properties is a huge challenge to macromol. design and engineering. HT-PEMs with microporous structures, constructed by the inefficient chain packing of contorted and rigid polymer backbones with imidazole, are reported for the first time. It is found that the widespread and interconnected microporosity of the polymers endows the HT-PEMs with an excellent phosphoric acid (PA) doping level (ADL) and a corresponding superhigh proton conductivity, as well as suitable mech. properties and PA-retention ability. An outstanding proton conductivity of 330.3 mS cm-1 is obtained at 180 °C under an anhydrous atm., which is superior to those of reported HT-PEMs with far higher ADLs (<260 mS cm-1). The high and stable proton conductivity appears to be related to the interconnected intrinsic microporosity, which increases the PA storage and provides proton-carriers with several highways for fast transport.

Computed Properties of 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem