Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Electric Literature of 1739-84-0.
Long, Xiangdong;Wang, Jia;Gao, Guang;Nie, Chao;Sun, Peng;Xi, Yongjie;Li, Fuwei research published 《 Direct Oxidative Amination of the Methyl C-H Bond in N-Heterocycles over Metal-Free Mesoporous Carbon》, the research content is summarized as follows. Herein, direct and efficient oxidative amination of the Me C-H bond in a wide range of N-heterocycles such as 2-methylpyridine, 3-methylquinoline, 4-methylpyrimidine, etc. to access the corresponding amides RC(O)NH2 (R = pyridin-2-yl, quinolin-2-yl, 1-methyl-1H-imidazol-2-yl, etc.) over metal-free porous carbon is successfully developed. To understand the fundamental structure-activity relationships of carbon catalysts, the surface functional groups and the graphitization degree of porous carbon have been purposefully tailored through doping with nitrogen or phosphorus. The results of characterization, kinetic studies, liquid-phase adsorption experiments, and theor. calculations indicate that the high activity of the carbon catalyst is attributed to the synergistic effect of surface acidic functional groups (hydroxyl/carboxylic acid/phosphate) and more graphene edge structures exposed on the surface of carbon materials with a high graphitization degree, in which the role of acidic functional groups is to adsorb the substrate mol. and the role of the graphene edge structure is to activate O2.
1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Electric Literature of 1739-84-0
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem