《TurboID-based proximity labeling for in planta identification of protein-protein interaction networks》 was written by Zhang, Yongliang; Li, Yuanyuan; Yang, Xinxin; Wen, Zhiyan; Nagalakshmi, Ugrappa; Dinesh-Kumar, Savithramma P.. Synthetic Route of C10H16N2O3S And the article was included in Journal of Visualized Experiments in 2020. The article conveys some information:
Proximity labeling (PL) techniques using engineered ascorbate peroxidase (APEX) or Escherichia coli biotin ligase BirA (known as BioID) have been successfully used for identification of protein-protein interactions (PPIs) in mammalian cells. However, requirements of toxic hydrogen peroxide (H2O2) in APEX-based PL, longer incubation time with biotin (16-24 h), and higher incubation temperature (37°C) in BioID-based PL severely limit their applications in plants. The recently described TurboID-based PL addresses many limitations of BioID and APEX. TurboID allows rapid proximity labeling of proteins in just 10 min under room temperature (RT) conditions. Although the utility of TurboID has been demonstrated in animal models, we recently showed that TurboID-based PL performs better in plants compared to BioID for labeling of proteins that are proximal to a protein of interest. Provided here is a step-by-step protocol for the identification of protein interaction partners using the N-terminal Toll/interleukin-1 receptor (TIR) domain of the nucleotide-binding leucine-rich repeat (NLR) protein family as a model. The method describes vector construction, agroinfiltration of protein expression constructs, biotin treatment, protein extraction and desalting, quantification, and enrichment of the biotinylated proteins by affinity purification The protocol described here can be easily adapted to study other proteins of interest in Nicotiana and other plant species. In addition to this study using 5-((3aS,4S,6aR)-2-Oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoic acid, there are many other studies that have used 5-((3aS,4S,6aR)-2-Oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoic acid(cas: 58-85-5Synthetic Route of C10H16N2O3S) was used in this study.
5-((3aS,4S,6aR)-2-Oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoic acid(cas: 58-85-5) may be used to elute proteins from avidin/streptavidin resins. It has been used for culturing of oligodendrocytes.Synthetic Route of C10H16N2O3S And it has been used as a vitamin supplement for the growth of Bacillus species.
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem