Dahi, Abdellatif’s team published research in Journal of Molecular Liquids in 2019 | CAS: 174501-65-6

3-Butyl-1-methyl-1H-imidazol-3-ium tetrafluoroborate(cas: 174501-65-6) is a member of lonic liquids. A multidisciplinary study on lonic liquids is emerging, including chemistry, materials science, chemical engineering, and environmental science. More specifically, some important fundamental viewpoints are now different from the original concepts, as insights into the nature of lonic liquids become deeper. For example, the physicochemical properties of lonic liquids are now recognized as ranging broadly from the oft quoted “nonvolatile, non-flammable, and air and water stable” to those that are distinctly volatile, flammable, and unstable. COA of Formula: C8H15BF4N2

The author of 《Water molecular state in 1-hexylpyridinium hexafluorophosphate: Water mean cluster size as a function of water concentration》 were Dahi, Abdellatif; Fatyeyeva, Kateryna; Chappey, Corinne; Langevin, Dominique; Marais, Stephane. And the article was published in Journal of Molecular Liquids in 2019. COA of Formula: C8H15BF4N2 The author mentioned the following in the article:

The water sorption behavior of representative pyridinium-based ionic liquid (IL), 1-hexylpyridinium hexafluorophosphate ([C6Py][PF6]), was studied over the whole range of the water activity a using a continuous gravimetric method. The anal. of the water sorption isotherm using the combination of a two-mode sorption (i.e. Henry-clustering) allowed to better understand [C6Py][PF6]-water interactions. At low and intermediate activity (a ≤ 0.8), the water mols. revealed a very low affinity to [C6Py][PF6] and, consequently, the water uptake was rather low. On the contrary, at high water activity (a > 0.8), the water uptake increased exponentially and the water clustering easily occurred. The constant of the Henry-clustering equation as well as the water clustering mechanism in [C6Py][PF6] were discussed and compared to those of imidazolium-based ILs: 1-hexyl-3-methylimidazolium hexafluorophosphate [C6C1i.m.][PF6] (water-immiscible IL) and 1-butyl-3-methylimidazolium tetrafluoroborate [C4C1i.m.][BF4] (water-miscible IL). It is shown that the sorption of water mols. by pyridinium-based ILs is controlled not only by the anion’s nature, but also by the cation’s nature. Moreover, the Zimm-Lundberg theory was used to determine the water mean cluster size (MCS) in [C6Py][PF6], [C6C1i.m.][PF6] and [C4C1i.m.][BF4]. The MCS results confirmed the strong capacity of water mols. to be aggregated in [C6Py][PF6]. In order to have a deeper insight into the water mol. state, IR spectroscopy measurements were carried out as a function of the relative humidity value and the obtained results were correlated with the results of water sorption isotherms. It is found that at high water activity (a > 0.8), sorbed water mols. are strongly linked with ILs by hydrogen bonds and, therefore, are easily aggregated. The results came from multiple reactions, including the reaction of 3-Butyl-1-methyl-1H-imidazol-3-ium tetrafluoroborate(cas: 174501-65-6COA of Formula: C8H15BF4N2)

3-Butyl-1-methyl-1H-imidazol-3-ium tetrafluoroborate(cas: 174501-65-6) is a member of lonic liquids. A multidisciplinary study on lonic liquids is emerging, including chemistry, materials science, chemical engineering, and environmental science. More specifically, some important fundamental viewpoints are now different from the original concepts, as insights into the nature of lonic liquids become deeper. For example, the physicochemical properties of lonic liquids are now recognized as ranging broadly from the oft quoted “nonvolatile, non-flammable, and air and water stable” to those that are distinctly volatile, flammable, and unstable. COA of Formula: C8H15BF4N2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem