Essandoh, Kobina; Yang, Liwang; Wang, Xiaohong; Huang, Wei; Qin, Dongze; Hao, Jiukuan; Wang, Yigang; Zingarelli, Basilia; Peng, Tianqing; Fan, Guo-Chang published the artcile< Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction>, Reference of 6823-69-4, the main research area is GW4869 exosome sepsis inflammation cardiac dysfunction; Cardiac dysfunction; Exosomes; Inflammatory response; Macrophages; Sepsis.
Sepsis is an infection-induced severe inflammatory disorder that leads to multiple organ failure. Amongst organs affected, myocardial depression is believed to be a major contributor to septic death. While it has been identified that large amounts of circulating pro-inflammatory cytokines are culprit for triggering cardiac dysfunction in sepsis, the underlying mechanisms remain obscure. Addnl., recent studies have shown that exosomes released from bacteria-infected macrophages are pro-inflammatory. Hence, we examined in this study whether blocking the generation of exosomes would be protective against sepsis-induced inflammatory response and cardiac dysfunction. To this end, we pre-treated RAW264.7 macrophages with GW4869, an inhibitor of exosome biogenesis/release, followed by endotoxin (LPS) challenge. In vivo, we injected wild-type (WT) mice with GW4869 for 1 h prior to endotoxin treatment or cecal ligation/puncture (CLP) surgery. We observed that pre-treatment with GW4869 significantly impaired release of both exosomes and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in RAW264.7 macrophages. At 12 h after LPS treatment or CLP surgery, WT mice pre-treated with GW4869 displayed lower amounts of exosomes and pro-inflammatory cytokines in the serum than control PBS-injected mice. Accordingly, GW4869 treatment diminished the sepsis-induced cardiac inflammation, attenuated myocardial depression and prolonged survival. Together, our findings indicate that blockade of exosome generation in sepsis dampens the sepsis-triggered inflammatory response and thereby, improves cardiac function and survival.
Biochimica et Biophysica Acta, Molecular Basis of Disease published new progress about Bacterial infection. 6823-69-4 belongs to class imidazoles-derivatives, and the molecular formula is C30H30Cl2N6O2, Reference of 6823-69-4.
Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem