Bellina, Fabio team published research on RSC Advances in 2021 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Imidazole based anticancer drug find applications in cancer chemotherapy. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Computed Properties of 1739-84-0.

Bellina, Fabio;Biagetti, Matteo;Guariento, Sara;Lessi, Marco;Fausti, Mattia;Ronchi, Paolo;Rosadoni, Elisabetta research published 《 Ligand-free Pd/Ag-mediated dehydrogenative alkynylation of imidazole derivatives》, the research content is summarized as follows. A variety of 2-alkynyl(benzo)imidazoles I (R = Ph, n-hexyl, 2-chlorophenyl, etc.; R1 = R2 = H; R1R2 = -CH=CH-CH=CH-) have been synthesized by dehydrogenative alkynation of N-methylimidazole or 1-methyl-1H-1,3-benzodiazole with terminal alkynes RCCH in NMP under air in the presence of Ag2CO3 as the oxidant and Pd(OAc)2 as the catalyst precursor. The data obtained in this study support a reaction mechanism involving a non-concerted metalation deprotonation (n-CMD) pathway.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Computed Properties of 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bayrakdar, Tahani A. C. A. team published research on ChemSusChem in 2021 | 250285-32-6

Category: imidazoles-derivatives, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Category: imidazoles-derivatives.

Bayrakdar, Tahani A. C. A.;Maliszewski, Benon P.;Nahra, Fady;Ormerod, Dominic;Nolan, Steven P. research published 《 Platinum-Catalyzed Alkene Hydrosilylation: Solvent-Free Process Development from Batch to a Membrane-Integrated Continuous Process》, the research content is summarized as follows. The integration of a membrane separation protocol with the platinum-catalyzed hydrosilylation of olefins is investigated. The catalytic reaction is first optimized in batch where [Pt(IPr*)(dms)Cl2] (IPr*=1,3-bis[2,6-bis(diphenylmethyl)-4-methylphenyl]imidazol-2-ylidene,dms=dimethylsulfide) demonstrates superior activity compared to the less sterically encumbered [Pt(SIPr)(dms)Cl2] (SIPr=1,3-bis(2,6-diisopropylphenyl)imidazolidine) congener. Filtration conditions are identified in membrane screening experiments Hydrosilylation of 1-octene catalyzed by [Pt(IPr*)(dms)Cl2] is conducted in continuous mode and the platinum catalyst is separated efficiently over the com. available Borsig oNF-2 membrane, all under solvent-free conditions. An advantage of this process is that both reaction and separation are coupled in a single step. Moreover, at the end of the process the intact catalyst was recovered in 80% yield as an off-white solid without any further purification

Category: imidazoles-derivatives, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., 250285-32-6.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Barlaam, Bernard team published research on Journal of Medicinal Chemistry in 2020 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Category: imidazoles-derivatives

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Category: imidazoles-derivatives.

Barlaam, Bernard;Casella, Robert;Cidado, Justin;Cook, Calum;De Savi, Chris;Dishington, Allan;Donald, Craig S.;Drew, Lisa;Ferguson, Andrew D.;Ferguson, Douglas;Glossop, Steve;Grebe, Tyler;Gu, Chungang;Hande, Sudhir;Hawkins, Janet;Hird, Alexander W.;Holmes, Jane;Horstick, James;Jiang, Yun;Lamb, Michelle L.;McGuire, Thomas M.;Moore, Jane E.;O’Connell, Nichole;Pike, Andy;Pike, Kurt G.;Proia, Theresa;Roberts, Bryan;San Martin, Maryann;Sarkar, Ujjal;Shao, Wenlin;Stead, Darren;Sumner, Neil;Thakur, Kumar;Vasbinder, Melissa M.;Varnes, Jeffrey G.;Wang, Jianyan;Wang, Lei;Wu, Dedong;Wu, Liangwei;Yang, Bin;Yao, Tieguang research published 《 Discovery of AZD4573, a Potent and Selective Inhibitor of CDK9 That Enables Short Duration of Target Engagement for the Treatment of Hematological Malignancies》, the research content is summarized as follows. A CDK9 inhibitor having short target engagement would enable a reduction of Mcl-1 activity, resulting in apoptosis in cancer cells dependent on Mcl-1 for survival. We report the optimization of a series of amidopyridines (from compound 2), focusing on properties suitable for achieving short target engagement after i.v. administration. By increasing potency and human metabolic clearance, we identified compound 24, a potent and selective CDK9 inhibitor with suitable predicted human pharmacokinetic properties to deliver transient inhibition of CDK9. Furthermore, the solubility of 24 was considered adequate to allow i.v. formulation at the anticipated ED. Short-term treatment with compound 24 led to a rapid dose- and time-dependent decrease of pSer2-RNAP2 and Mcl-1, resulting in cell apoptosis in multiple hematol. cancer cell lines. Intermittent dosing of compound 24 demonstrated efficacy in xenograft models derived from multiple hematol. tumors. Compound 24 is currently in clin. trials for the treatment of hematol. malignancies.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., Category: imidazoles-derivatives

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bargan, Alexandra team published research on Polyhedron in 2020 | 3034-50-2

HPLC of Formula: 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 3034-50-2, formula is C4H4N2O, Name is Imidazole-4-carbaldehyde. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. HPLC of Formula: 3034-50-2.

Bargan, Alexandra;Cazacu, Maria;Dascalu, Mihaela;Macsim, Ana-Maria;Soroceanu, Alina;Macsim, Ioan Florin research published 《 Synthesis, structural characterization and properties evaluation of two new zwitterionic siloxane compounds》, the research content is summarized as follows. 1,3-Bis(3-aminopropyl)tetramethyldisiloxane is a valuable tool for the introduction of siloxane segments into different organic-inorganic structures. This paper demonstrates how 1,3-bis(3-aminopropyl)tetramethyldisiloxane can easily form crystalline salts with different counterparts with which it comes into contact. Thus, in the reaction chamber 1,3-bis(3-ammoniumpropyl)tetramethyldisiloxane chloride and nitrate were formed in the detriment of one stage metal (Ni and Cu) complexes of Schiff’s base with 4-imidazole carboxaldehyde. The salt products were isolated in crystalline state and were structurally characterized by single-crystal x-ray diffraction, elemental and spectral (FTIR, 1H NMR) anal. The thermal and moisture stability as well as the aggregation ability in solution and sorption capacity for certain mols. were evaluated by adequate techniques.

HPLC of Formula: 3034-50-2, 1H-Imidazole-4-carbaldehyde, also known as 1H-Imidazole-4-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
The starting material for a practical synthesis of a potent C17,20-lyase inhibitor. The lyase is a key enzyme in androgen biosynthesis as well as a target for treatment of androgen-dependent prostate cancer. Used to synthesize potent antimalarial drug.
1H-Imidazole-4-carbaldehyde is a chemical compound that has been shown to bind to the glucocorticoid receptor. It was synthesized by reacting 1,2-diaminobenzene with formaldehyde and then hydrolyzing the intermediate imidazolium salt, which is stable in acidic solutions. The complex can be prepared by mixing two solutions of imidazole and trifluoroacetic acid. The ligand has a redox potential of -0.1 V (vs NHE). This means it can be oxidized to the carbonyl group or reduced back to the imidazole ring. The compound is stable in neutral solution and forms stable complexes with metal ions such as Cu+, Fe3+, and Zn2+. It also coordinates well with oxygen atoms, nitrogen atoms, and water molecules. 1H-Imidazole-4-carbaldehyde has been shown to bind to glucocortic, 3034-50-2.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Banerjee, Arghya team published research on Angewandte Chemie, International Edition in 2022 | 250285-32-6

250285-32-6, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., Product Details of C27H37ClN2

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 250285-32-6, formula is C27H37ClN2, Name is 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Product Details of C27H37ClN2.

Banerjee, Arghya;Sarkar, Satavisha;Shah, Jagrut A.;Frederiks, Nicoline C.;Bazan-Bergamino, Emmanuel A.;Johnson, Christopher J.;Ngai, Ming-Yu research published 《 Excited-State Copper Catalysis for the Synthesis of Heterocycles》, the research content is summarized as follows. Herein, the discovery and development of visible-light-induced, synergistic excited-state copper catalysis using a combination of Cu(IPr)I as a catalyst and rac-BINAP as a ligand, which produces more than 10 distinct classes of heterocycles was reported. The reaction tolerated a broad array of functional groups and complex mol. scaffolds, including derivatives of peptides, natural products and marketed drugs. Preliminary mechanistic investigation suggested in situ generations of [Cu(BINAP)2]+ and [Cu(IPr)2]+ catalysts that work cooperatively under visible-light irradiation to facilitate catalytic carbo-aroylation of unactivated alkenes, affording a wide range of useful heterocycles.

250285-32-6, 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, also known as 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride, is a useful research compound. Its molecular formula is C27H37ClN2 and its molecular weight is 425 g/mol. The purity is usually 95%.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride has been used to generate N-heterocyclic carbene catalysts for use in carbonylative cross-coupling of pyridyl halides with aryl boronic acids.

1,3-Bis(2,6-diisopropylphenyl)imidazolium Chloride is an imidazolium salt that is active against all stages of Trypanosoma cruzi and may represent a promising candidate for treatment of Chagas disease.

1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is an organic compound that is used as a solvent. It was originally synthesized by reacting triethyl orthoformate with 2,6-diisopropylaniline. This reaction formed the corresponding imidazolium salt. The synthesis of this compound was later improved by using ring-opening polymerization of glycolide and furfural. 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride is mainly used to extract estradiol from urine samples in clinical laboratories., Product Details of C27H37ClN2

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bandopadhyay, Nilaj team published research on Polyhedron in 2022 | 10111-08-7

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Category: imidazoles-derivatives

The solubility of imidazoles in ethers is lower than that in alcohols and decreases with increasing chain length of the ethers . 10111-08-7, formula is C4H4N2O, Name is 1H-Imidazole-2-carbaldehyde. In contrast, the solubility of benzimidazoles in alcohols (C3–C6) is higher than in water and generally decreases with an increase of the alkyl chain length of the alcohols. Category: imidazoles-derivatives.

Bandopadhyay, Nilaj;Paramanik, Krishnendu;Mudi, Prafullya Kumar;Sarkar, Gayetri;Kotakonda, Muddukrishnaiah;Shit, Madhusudan;Biswas, Bhaskar;Sankar Das, Hari research published 《 A thiomethyl-substituted imidazolyl imine functionalized copper(II) complex: synthesis, structural characterization, phenoxazinone synthase mimics and biological activities》, the research content is summarized as follows. A cis-dichloro Cu(II) complex with a novel tridentate thiomethyl substituted imidazole based Schiff base ligand L, obtained from 2-methylthioaniline and 2-imidazolecarboxaldehyde, was synthesized and characterized by spectroscopic methods and x-ray crystallog. The crystal structure of the complex shows a distorted square-pyramidal environment around the Cu(II) center, coordinated by the tridentate ligand L and two cis-chloride ligands (axial and equatorial). The supramol. framework, connected through several intermol. noncovalent interactions in the crystal structure, was studied. The complex effectively shows phenoxazinone synthase-like activity (aerial oxidation of 2-aminophenol to 2-amino-phenoxazine-3-one) under ambient conditions with a high turnover number of 1.92 × 104 h-1. Further, the antimicrobial activity of the Cu(II) complex was examined against E. coli, Staphylococcus aureus and K. pneumoniae clin. microbial cultures, which imply its significant bactericidal property compared to the standard antibiotic agent ciprofloxacin. The anticancer activity of the Cu(II) complex was tested against the human colorectal adenocarcinoma (HT-29) cancerous cell line and it shows notable activity with an IC50 value of 125μg mL-1.

10111-08-7, 1H-Imidazole-2-carbaldehyde, also known as 1H-Imidazole-2-carbaldehyde, is a useful research compound. Its molecular formula is C4H4N2O and its molecular weight is 96.09 g/mol. The purity is usually 95%.
1H-Imidazole-2-carboxaldehyde is a novel PTP1b inhibitor with potential application to treat type 2 diabetes.
1H-Imidazole-2-carboxaldehyde is a broad-spectrum antimicrobial that has been shown to inhibit the growth of bacteria by interfering with protein synthesis. It binds to the cytosolic protein and receptor molecule, which are involved in the activation of bacterial enzymes. Imidazole-2-carboxaldehyde reacts with anhydrous sodium and copper complex to produce hydrogen bonds, which prevent the formation of the nitrogen atoms necessary for cellular processes. This chemical also has biological properties such as glyoxal, which inhibits bacterial growth by reacting with amino groups on proteins., Category: imidazoles-derivatives

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Balasurya, S. team published research on Chemosphere in 2022 | 60-56-0

Application of C4H6N2S, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Imidazole based anticancer drug find applications in cancer chemotherapy. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Application of C4H6N2S.

Balasurya, S.;Okla, Mohammad K.;Alaraidh, Ibrahim A.;Soufan, Walid;Al-Ghamdi, Abdullah A.;Ahamad, Syed R.;Abdel-Maksoud, Mostafa A.;AbdElgawad, Hamada;Raju, Lija L.;Thomas, Ajith M.;Khan, S. Sudheer research published 《 Photodegradation of 5-flurouracil, carvedilol, para-chlorophenol and methimazole with 3D MnWO4 nanoflower modified Ag2WO4 nanorods: A non-genotoxic nanomaterial for water treatment》, the research content is summarized as follows. The present study focused on the photocatalytic degradation of 5-Flurouracil (FU), carvedilol (Car), para-chlorophenol (PCP) and methimazole (Met) under visible light irradiation by MnWO4/Ag2WO4 (MWO/AWO) nanohybrid. Here, MWO/AWO nanohybrid was characterized by XRD, TEM, EDS, XPS, ESR, EIS, BET and DRS. The band gap energy of the MWO/AWO nanohybrid was found to be 2.75 eV, which enables effective photocatalytic activity of nanohybrid under visible light. The photocatalytic degradation of various PhACs such as Fu, Car, PCP and Met was found to be 98.8, 100, 98 and 98.1% resp. The degradation efficiency of the MWO/AWO nanohybrid on various PhACs was higher than the pure MWO and AWO nanoparticle. The effective formation of OH• and •O2 by MWO/AWO nanohybrid played an important role in degradation of PhACs and it was determined by radical scavenging experiment Further, the intermediates formed during the photocatalytic process were analyzed by GC-MS/MS to elucidate the photodegradation pathway and the results reveal the complete mineralization of the PhACs. The toxicity of the degraded product was performed against on Bacillus subtilis and Escherichia coli where it shows that the nanohybrid possesses high relative growth inhibition than AWO and MWO nanoparticles. In addition, the genotoxicity of the nanohybrid against Allium cepa was performed and it exhibited lower toxicity. The synthesized nanohybrid proves to be an excellent photocatalyst with good stability, reusability, eco-friendly, and cost-effective material for implementation in practical applications.

Application of C4H6N2S, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bakare, Sneha Prasad team published research on New Journal of Chemistry in 2022 | 60-56-0

Name: 1-Methyl-1H-imidazole-2(3H)-thione, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Imidazole Biochem/physiol Actions: Imidazole derivatives have antibacterial, antifungal and anticancer functionality. It interacts with DNA and also binds to protein and stops cell division. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. It also acts as a microtubule destabilizing agents and inhibits topoisomerase and Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1) enzymes. Name: 1-Methyl-1H-imidazole-2(3H)-thione.

Bakare, Sneha Prasad;Patil, Mahendra research published 《 Thiolate-assisted copper(I) catalyzed C-S cross coupling of thiols with aryl iodides: scope, kinetics and mechanism》, the research content is summarized as follows. An efficient and practical method for the C-S cross coupling of thiophenols with aryl iodides using a Cu(I) catalyst was reported. A diverse set of thiophenols was coupled with electron rich and poor aryl iodides to obtain diaryl sulfides in good to excellent yields. Noteworthily, these reactions proceeded smoothly in polar protic solvents and under ligand-free environments. This procedure also finds application in the synthesis of 2-aminophenyl sulfide derivatives via ring opening of readily available benzothiazole. Furthermore, performed kinetics and computational studies to understand the mechanism of the Cu(I) catalyzed reaction in the absence of a ligand.

Name: 1-Methyl-1H-imidazole-2(3H)-thione, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Bagur, Sophie team published research on Nature Communications in 2021 | 60-56-0

Related Products of 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. Related Products of 60-56-0.

Bagur, Sophie;Lefort, Julie M.;Lacroix, Marie M.;de Lavilleon, Gaetan;Herry, Cyril;Chouvaeff, Mathilde;Billand, Clara;Geoffroy, Helene;Benchenane, Karim research published 《 Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation》, the research content is summarized as follows. Abstract: Brain-body interactions are thought to be essential in emotions but their physiol. basis remains poorly understood. In mice, regular 4 Hz breathing appears during freezing after cue-fear conditioning. Here we show that the olfactory bulb (OB) transmits this rhythm to the dorsomedial prefrontal cortex (dmPFC) where it organizes neural activity. Reduction of the respiratory-related 4 Hz oscillation, via bulbectomy or optogenetic perturbation of the OB, reduces freezing. Behavioral modeling shows that this is due to a specific reduction in freezing maintenance without impacting its initiation, thus dissociating these two phenomena. dmPFC LFP and firing patterns support the region′s specific function in freezing maintenance. In particular, population anal. reveals that network activity tracks 4 Hz power dynamics during freezing and reaches a stable state at 4 Hz peak that lasts until freezing termination. These results provide a potential mechanism and a functional role for bodily feedback in emotions and therefore shed light on the historical James-Cannon debate.

Related Products of 60-56-0, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem

Journal of Structural Chemistry | Cas: 5805-39-0 was involved in experiment

2-(1H-Benzo[d]imidazol-2-yl)aniline(cas:5805-39-0 Recommanded Product: 2-(1H-Benzo[d]imidazol-2-yl)aniline) is a chemical reagent used in the synthesis of small molecule inhibitors targeting ubiquitin-like domains for treatments of diseases caused by the cellular accumulation of damaged proteins.

Odame, F.;Hosten, E. C.;Tshentu, Z. R. published 《Synthesis, Characterization, and Computional Studies of Triazatetracyclo Acetamide》 in 2018. The article was appeared in 《Journal of Structural Chemistry》. They have made some progress in their research.Recommanded Product: 2-(1H-Benzo[d]imidazol-2-yl)aniline The article mentions the following:

N-[(9E)-8,0 10,0 17-triazatetracyclo[8.7.0.02,7.011,18]heptadeca-1(17),2(7),3,5,11,13,15-heptaen-9-ylidene] acetamide (I) was synthesized and characterized by spectroscopy, microanal., and single crystal X-ray diffractometry. Compound I crystallizes in the monoclinic space group P21/n with a = 17.5552(17) Å, b = 4.6163(4) Å, c = 17.7662(17) Å, β = 115.953(3)°, and Z = 4. The bond angles and bond lengths of the compound are computed using the d. functional theory with B3LYP, BPW91, and wB97XD functionals and the 6-31G++(d,p) basis set. The frontier orbitals that contribute to the reactivity of triazatetracyclics were discussed. And 2-(1H-Benzo[d]imidazol-2-yl)aniline (cas: 5805-39-0) was used in the research process.

2-(1H-Benzo[d]imidazol-2-yl)aniline(cas:5805-39-0 Recommanded Product: 2-(1H-Benzo[d]imidazol-2-yl)aniline) is a chemical reagent used in the synthesis of small molecule inhibitors targeting ubiquitin-like domains for treatments of diseases caused by the cellular accumulation of damaged proteins.

Reference:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem