Wang, Jing et al. published new progress in experiments with the help of cas: 65039-09-0

1-Ethyl-3-methyl-1H-imidazol-3-ium chloride(cas: 65039-09-0) is an imidazolium chloride ionic liquid that can be used as:a solvent as well as catalyst for the depolymerization of oak wood lignin; a solvent in the hydrolysis of hemicellulose (xylan) to xylose using Brønsted acid catalysts.Application In Synthesis of 1-Ethyl-3-methyl-1H-imidazol-3-ium chloride

Wang, Jing;Li, Qing;Li, Kuncai;Sun, Xu;Wang, Yizhuo;Zhuang, Tiantian;Yan, Junjie;Wang, Hong published 《Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding》. The research results were published in《Advanced Materials (Weinheim, Germany)》 in 2022.Application In Synthesis of 1-Ethyl-3-methyl-1H-imidazol-3-ium chloride The article conveys some information:

Conducting hydrogels have attracted much attention for the emerging field of hydrogel bioelectronics, especially poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) based hydrogels, because of their great biocompatibility and stability. However, the elec. conductivities of hydrogels are often lower than 1 S cm-1 which are not suitable for digital circuits or applications in bioelectronics. Introducing conductive inorganic fillers into the hydrogels can improve their elec. conductivities. However, it may lead to compromises in compliance, biocompatibility, deformability, biodegradability, etc. Herein, a series of highly conductive ionic liquid (IL) doped PEDOT:PSS hydrogels without any conductive fillers is reported. These hydrogels exhibit high conductivities up to ≈305 S cm-1, which is ≈8 times higher than the record of polymeric hydrogels without conductive fillers in literature. The high elec. conductivity results in enhanced areal thermoelec. output power for hydrogel-based thermoelec. devices, and high specific electromagnetic interference (EMI) shielding efficiency which is about an order in magnitude higher than that of state-of-the-art conductive hydrogels in literature. Furthermore, these stretchable (strain >30%) hydrogels exhibit fast self-healing, and shape/size-tunable properties, which are desirable for hydrogel bioelectronics and wearable organic devices. The results indicate that these highly conductive hydrogels are promising in applications such as sensing, thermoelecs., EMI shielding, etc. And 1-Ethyl-3-methyl-1H-imidazol-3-ium chloride (cas: 65039-09-0) was used in the research process.

1-Ethyl-3-methyl-1H-imidazol-3-ium chloride(cas: 65039-09-0) is an imidazolium chloride ionic liquid that can be used as:a solvent as well as catalyst for the depolymerization of oak wood lignin; a solvent in the hydrolysis of hemicellulose (xylan) to xylose using Brønsted acid catalysts.Application In Synthesis of 1-Ethyl-3-methyl-1H-imidazol-3-ium chloride

Reference:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem