Jin, Chongyue team published research on Chemical Engineering Journal (Amsterdam, Netherlands) in 2020 | 1739-84-0

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. Product Details of C5H8N2.

Jin, Chongyue;Wang, Min;Li, Zhilin;Kang, Jin;Zhao, Yan;Han, Jin;Wu, Zengmin research published 《 Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance》, the research content is summarized as follows. In this study, to improve peroxymonosulfate (PMS)-mediated visible-light photocatalytic performance of g-C3N4 in antibiotics degradation and elucidate its mechanism, an ultrathin Co3O4 nanomeshes/g-C3N4 nanosheets 2D Z-scheme heterojunction composite (x% Co3O4/g-C3N4) was successfully prepared calcining the mixtures of MOF-Co ultrathin nanosheets and g-C3N4. This unique nanomeshes/nanosheets structure with large SSA (153.92 m2/g) possessed an abundance of accessible active sites and large area intimate interfaces between Co3O4 and g-C3N4, thus remarkably promoting the separation and transport of charge carriers. The as-prepared optimal 10% Co3O4/g-C3N4 composites exhibited excellent degradation efficiency toward tetracycline (TC) under visible light irradiation and were further enhanced with the addition of PMS. The mechanism of the enhanced TC degradation in Co3O4/g-C3N4/Vis/PMS system was investigated in detail based on the characterization of the catalysts, TC degradation efficiency assessment, ESR measurements, and reactive oxygen species (ROSs) quenching results. The TC degradation pathway was proposed based on the intermediates identified by the gas chromatog.-mass spectrometer (GC-MS) measurements. This study provides a facile and promising path for the remediation of contaminated water via PMS mediated photocatalysis over highly active g-C3N4-based catalysts.

Product Details of C5H8N2, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., 1739-84-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem