Eftaiha, Ala′a F. team published research on Reaction Chemistry & Engineering in 2022 | 1739-84-0

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Imidazole is a heterocyclic compound with a five-membered planar ring. It is amphoteric and highly polar. 1739-84-0, formula is C5H8N2, Name is 1,2-Dimethyl-1H-imidazole. The pharmacophore of imidazole exists in bioactive compounds including amino acids, plant growth regulators and therapeutic agents. HPLC of Formula: 1739-84-0.

Eftaiha, Ala′a F.;Qaroush, Abdussalam K.;Hasan, Areej K.;Helal, Wissam;Al-Qaisi, Feda′a M. research published 《 CO2 fixation into cyclic carbonates catalyzed by single-site aprotic organocatalysts》, the research content is summarized as follows. CO2 fixation is a prominent research theme that attracts the attention of scientists, stakeholders and governmental entities with the aim of ultimately bringing com. products to the market. Herein, a series of mono-, bi-functional and polymeric imidazolium-based catalysts were synthesized and utilized for the production of cyclic carbonates (CCs) using epoxides and 1 bar of CO2 under mild reaction conditions. In addition, three onium salts, namely, ammonium, phosphonium, and pyridinium, were synthesized and characterized using 1H/13C NMR (NMR) and attenuated total reflectance-Fourier transform IR (ATR-FTIR) spectroscopies, together with thermal gravimetric anal. (TGA), high-resolution mass spectrometry (HRMS) and elemental anal. (EA). All the investigated organocatalysts showed almost quant. CC conversions, which were isolated from the crude reaction and identified spectroscopically. D. functional theory (DFT) calculations revealed that the aforementioned onium salts followed the same detailed mechanism for the cycloaddition reaction, which started with the electrostatic interaction of the onium centers with the oxygen atom of the epoxide. Even in the case of the imidazolium nucleus, the acidic C2 proton played a marginal role in the epoxide activation than in the ring-opening step.

1739-84-0, 1,2-Dimethylimidazole is used in the synthesis of 1,2-dimethyl-3-n-butylimidazoliumchloride and 1,2-dimethyl-3-n-propylimidazolium chloride. It also can be used in the synthesis of 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexafluorophosphate salts.
1,2-Dimethylimidazole is a heterocyclic compound that contains nitrogen and carbon. It can be produced by the reaction between glyoxal and fatty acid in the presence of a base. 1,2-Dimethylimidazole has been shown to have biological properties such as an antioxidant effect. It is also used as a chemical intermediate for production of other chemicals such as 2-methylimidazole and 3-methylimidazole. 1,2-Dimethylimidazole has been shown to react with metal carbonyls to produce methylimines, which are useful intermediates in organic synthesis. The reaction mechanism involves hydrogen bonding and steric interactions between the imidazole ring and the metal carbonyl reactant., HPLC of Formula: 1739-84-0

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem