Balasurya, S. team published research on Chemosphere in 2022 | 60-56-0

Application of C4H6N2S, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Imidazole based anticancer drug find applications in cancer chemotherapy. 60-56-0, formula is C4H6N2S, Name is 1-Methyl-1H-imidazole-2(3H)-thione. It is used as buffer component for purification of the histidine tagged recombinant proteins in immobilized metal-affinity chromatography (IMAC). Application of C4H6N2S.

Balasurya, S.;Okla, Mohammad K.;Alaraidh, Ibrahim A.;Soufan, Walid;Al-Ghamdi, Abdullah A.;Ahamad, Syed R.;Abdel-Maksoud, Mostafa A.;AbdElgawad, Hamada;Raju, Lija L.;Thomas, Ajith M.;Khan, S. Sudheer research published 《 Photodegradation of 5-flurouracil, carvedilol, para-chlorophenol and methimazole with 3D MnWO4 nanoflower modified Ag2WO4 nanorods: A non-genotoxic nanomaterial for water treatment》, the research content is summarized as follows. The present study focused on the photocatalytic degradation of 5-Flurouracil (FU), carvedilol (Car), para-chlorophenol (PCP) and methimazole (Met) under visible light irradiation by MnWO4/Ag2WO4 (MWO/AWO) nanohybrid. Here, MWO/AWO nanohybrid was characterized by XRD, TEM, EDS, XPS, ESR, EIS, BET and DRS. The band gap energy of the MWO/AWO nanohybrid was found to be 2.75 eV, which enables effective photocatalytic activity of nanohybrid under visible light. The photocatalytic degradation of various PhACs such as Fu, Car, PCP and Met was found to be 98.8, 100, 98 and 98.1% resp. The degradation efficiency of the MWO/AWO nanohybrid on various PhACs was higher than the pure MWO and AWO nanoparticle. The effective formation of OH• and •O2 by MWO/AWO nanohybrid played an important role in degradation of PhACs and it was determined by radical scavenging experiment Further, the intermediates formed during the photocatalytic process were analyzed by GC-MS/MS to elucidate the photodegradation pathway and the results reveal the complete mineralization of the PhACs. The toxicity of the degraded product was performed against on Bacillus subtilis and Escherichia coli where it shows that the nanohybrid possesses high relative growth inhibition than AWO and MWO nanoparticles. In addition, the genotoxicity of the nanohybrid against Allium cepa was performed and it exhibited lower toxicity. The synthesized nanohybrid proves to be an excellent photocatalyst with good stability, reusability, eco-friendly, and cost-effective material for implementation in practical applications.

Application of C4H6N2S, Methimazole is an antithyroid compound found to have antioxidant properties. Methimazole inhibits activation of the IFN-g-induced Janus kinase (JAK)/STAT signaling pathway in FRTL-5 thyroid cells, which may account for its immunodolulatory effects. Additionally, methimazole is an inhibitor of thyroperoxidase.

Methimazole is a thiourea antithyroid agent that prevents iodine organification, thus inhibiting the synthesis of thyroxine. Antihyperthyroid.

Methimazole is an inhibitor of thyroid hormone synthesis. It is a substrate for thyroid peroxidase that traps oxidized iodide, preventing its use by thyroglobulin for thyroid hormone synthesis. Methimazole (0.4 mg/kg) inhibits the absorption of radiolabeled iodide by the thyroid gland in rats by 80.9%.3 It reduces the incidence of lymphocytic thyroiditis in the insulin-dependent type 1 diabetic BB/W rat. Methimazole has been used to induce hypothyroidism in mice. Formulations containing methimazole have been used in the treatment of hyperthyroidism.

Methimazole is a thyreostatic compound, and an antihormone, which is widely used in medicine for the treatment of hyperthyroidism.

Methimazole is a thioamide inhibitor of the enzyme thyroid peroxidase (TPO), with antithyroid activity. Upon administration, methimazole inhibits the metabolism of iodide and the iodination of tyrosine residues in the thyroid hormone precursor thyroglobulin by TPO; this prevents the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4).

Methimazole is an antithyroid medication which is now considered the first line agent for medical therapy of hyperthyroidism and Graves disease. Methimazole has been linked to serum aminotransferase elevations during therapy as well as to a clinically apparent, idiosyncratic liver injury that is typically cholestatic and self-limited in course.
Methimazole, also known as tapazole or danantizol, belongs to the class of organic compounds known as imidazolethiones. These are aromatic compounds containing an imidazole ring which bears a thioketone group. Methimazole is a drug which is used for the treatment of hyperthyroidism, goiter, graves disease and psoriasis. Methimazole is soluble (in water) and a very weakly acidic compound (based on its pKa). Methimazole has been detected in multiple biofluids, such as urine and blood. Methimazole can be converted into methimazole S-oxide., 60-56-0.

Referemce:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem