Brief introduction of 58656-04-5

《Mechanistic Investigation of the Ruthenium-N-Heterocyclic-Carbene-Catalyzed Amidation of Amines with Alcohols》 provides a strategy for the preparation of materials with excellent comprehensive properties, which is conducive to broaden the application field of this compound(Tricyclohexylphosphonium tetrafluoroborate)Quality Control of Tricyclohexylphosphonium tetrafluoroborate.

Quality Control of Tricyclohexylphosphonium tetrafluoroborate. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: Tricyclohexylphosphonium tetrafluoroborate, is researched, Molecular C18H34BF4P, CAS is 58656-04-5, about Mechanistic Investigation of the Ruthenium-N-Heterocyclic-Carbene-Catalyzed Amidation of Amines with Alcohols.

The mechanism of the ruthenium-N-heterocyclic-carbene-catalyzed formation of amides from alcs. and amines was investigated by exptl. techniques (Hammett studies, kinetic isotope effects) and by a computational study with dispersion-corrected d. functional theory (DFT/M06). The Hammett study indicated that a small pos. charge builds-up at the benzylic position in the transition state of the turnover-limiting step. The kinetic isotope effect was determined to be 2.29(±0.15), which suggests that the breakage of the C-H bond is not the rate-limiting step, but that it is one of several slow steps in the catalytic cycle. Rapid scrambling of hydrogen and deuterium at the α position of the alc. was observed with deuterium-labeled substrates, which implies that the catalytically active species is a ruthenium dihydride. The exptl. results were supported by the characterization of a plausible catalytic cycle by using DFT/M06. Both cis-dihydride and trans-dihydride intermediates were considered, but when the theor. turnover frequencies (TOFs) were derived directly from the calculated DFT/M06 energies, we found that only the trans-dihydride pathway was in agreement with the exptl. determined TOFs.

《Mechanistic Investigation of the Ruthenium-N-Heterocyclic-Carbene-Catalyzed Amidation of Amines with Alcohols》 provides a strategy for the preparation of materials with excellent comprehensive properties, which is conducive to broaden the application field of this compound(Tricyclohexylphosphonium tetrafluoroborate)Quality Control of Tricyclohexylphosphonium tetrafluoroborate.

Reference:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem