Wang, Zexiang; Xing, Keyu; Ding, Nengshui; Wang, Suhua; Zhang, Ganggang; Lai, Weihua published an article about the compound: Hydrogen tetrachloroaurate(III) trihydrate( cas:16961-25-4,SMILESS:Cl[Au-](Cl)(Cl)Cl.[H]O[H].[H]O[H].[H]O[H].[H+] ).Category: imidazoles-derivatives. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:16961-25-4) through the article.
Herein, we propose a lateral flow immunoassay (LFIA) based on the dual spectral-overlapped fluorescence quenching of polydopamine nanospheres (PDANs) caused by the inner filter effect to sensitively detect sulfamethazine (SMZ). The fluorescence quenching LFIA device consists of four parts: absorbent pad, polyvinyl chloride pad, sample pad, and nitrocellulose membrane. Compared with traditional quenchers such as gold nanoparticles (AuNPs) with single spectral-overlapped quenching ability, PDANs can quench the excitation light and emission light of three fluorescence donors (aggregation-induced emission fluorescent microsphere, AIEFM; fluorescent microsphere, FM; and quantum dot bead, QB). The fluorescence intensity changes (ΔF) are numerically larger for PDANs-LFIA (ΔFAIEFM = 2315, ΔFFM = 979, ΔFQB = 910) than those for AuNPs-LFIA (ΔFAIEFM = 1722, ΔFFM = 833, ΔFQB =;520). AIEFM-based PDANs-LFIA exhibits a large ΔF (2315) in response to the changes in the SMZ concentration, and produces a high signal-to-noise ratio. The limit of detection (LOD) and visual LOD of LFIA based on PDANs quenching AIEFM for the detection of SMZ in chicken are 0.043 and 0.5 ng/mL, resp. The results confirm that the proposed method can be used for the detection of hazardous materials in practical applications.
Here is a brief introduction to this compound(16961-25-4)Category: imidazoles-derivatives, if you want to know about other compounds related to this compound(16961-25-4), you can read my other articles.
Reference:
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem