Simple exploration of 104619-51-4

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, Di(1H-imidazol-1-yl)methanimine, other downstream synthetic routes, hurry up and to see.

Adding a certain compound to certain chemical reactions, such as: 104619-51-4, name is Di(1H-imidazol-1-yl)methanimine, belongs to imidazoles-derivatives compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 104619-51-4, Quality Control of Di(1H-imidazol-1-yl)methanimine

Step I: 3-bromo-N,N-bis[(4-methoxyphenyl)methyl]-2-[1-[(4-methoxyphenyl)methyl]-1H-1,2,3,4-tetrazol-5-yl]-6-(trifluoromethyl)benzene-1-sulfonamide, and 3-bromo-N,N-bis[(4-methoxyphenyl)methyl]-2-[2-[(4-methoxyphenyl)methyl]-2H-1,2,3,4-tetrazol-5-yl]-6-(trifluoromethyl)benzene-1-sulfonamide (0386) Into a 10000-mL 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 3-bromo-2-(1H-1,2,3,4-tetrazol-5-yl)-6-(trifluoromethyl)benzene-1-sulfonamide (230 g, 618.08 mmol, 1.00 equiv), potassium carbonate (276 g, 2.00 mol, 3.23 equiv), NaI (18.4 g), Bu4NCl (34.0 g, 122 mmol, 0.20 equiv), chloroform (3800 mL, 1.00 equiv), 1-(chloromethyl)-4-methoxybenzene (380 g, 2.43 mol, 3.93 equiv), water (2550 mL). The resulting solution was stirred for 12 hr at 55 C. The aqueous phase was extracted with 2×1000 mL of DCM. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/ hexane (1:10). Purification afforded 3-bromo-N,N-bis[(4-methoxyphenyl)methyl]-2-[1-[(4-methoxyphenyl)methyl]-1H-1,2,3,4-tetrazol-5-yl]-6-(trifluoromethyl)benzene-1-sulfonamide, and 3-bromo-N,N-bis[(4-methoxyphenyl)methyl]-2-[2-[(4-methoxyphenyl)methyl]-2H-1,2,3,4-tetrazol-5-yl]-6-(trifluoromethyl)benzene-1-sulfonamide. (0387) LC-MS: (ES, m/z): 732 [M+H]+. (0388) H-NMR: (CDCl3, 300 Hz, ppm): delta 3.763 (9H, s), 3.820-3.872 (2H, d, J=15.6), 4.402-4.454 (2H, d, J=15.6), 5.154-5.203 (1H, d, J=14.7), 5.560-5.609 (1H, d, J=14.7), 6.702-6.763 (6H, m), 6.912-6.941 (4H, m), 7.109-7.138 (2H, m), 7.839-7.854 (2H, m). Reference Example 25 (3-[bis[(4-methoxyphenyl)methyl]sulfamoyl]-2-[1-[(4-methoxyphenyl)methyl]-1H-1,2,3,4-tetrazol-5-yl]-4-(trifluoromethyl)phenyl)boronic acid and (3-[bis[(4-methoxyphenyl)methyl]sulfamoyl]-2-[2-[(4-methoxyphenyl)methyl]-2H-1,2,3,4-tetrazol-5-yl]-4-(trifluoromethyl)phenyl)boronic acid Into a 1 L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a mixture of 3-bromo-N,N-bis[(4-methoxyphenyl)methyl]-2-[1-[(4-methoxyphenyl)methyl]-1H-1,2,3,4-tetrazol-5-yl]-6-(trifluoromethyl)benzene-1-sulfonamide and 3-bromo-N,N-bis[(4-methoxyphenyl)methyl]-2-[2-[(4-methoxyphenyl)methyl]-2H-1,2,3,4-tetrazol-5-yl]-6-(trifluoromethyl)benzene-1-sulfonamide (REFERENCE EXAMPLE 24, 120 g, 163.81 mmol, 1.00 equiv), 1,4-dioxane (360 mL), 2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-5,5-dimethyl-1,3,2-dioxaborinane (111 g, 491 mmol, 3.00 equiv), KOAc (80.3 g, 818 mmol, 5.00 equiv), 2-2-[chloro(triphenyl-5-phosphanylidene)palladio]phenylaniline (9.4 g, 16.42 mmol, 0.10 equiv). The resulting solution was stirred for 6 hr at 60 C. The resulting solution was diluted with 500 mL of CH3CN. The solids were filtered out. The filtrate was concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC with the following conditions (CombiFlash-1): Column, C18 silica gel; mobile phase, CH3CN/H2O=1:2 increasing to CH3CN/H2O=2:1 within 25 min, and then CH3CN/H2O=2:1 within 25 min, and then CH3CN/H2O=1:0 within 10 min; Detector, UV 210 nm. This afforded (3-[bis[(4-methoxyphenyl)methyl]sulfamoyl]-2-[1-[(4-methoxyphenyl)methyl]-1H-1,2,3,4-tetrazol-5-yl]-4-(trifluoromethyl)phenyl)boronic acid and (3-[bis[(4-methoxyphenyl)methyl]sulfamoyl]-2-[2-[(4-methoxyphenyl)methyl]-2H-1,2,3,4-tetrazol-5-yl]-4-(trifluoromethyl)phenyl)boronic acid. (0391) LC-MS: (ES, m/z): 698 [M+H]+ (0392) H-NMR: (300 MHz, DMSO, ppm): delta 3.616-3.860 (11H, m), 3.860 (0.855H, s), 4.459-4.511 (1.492H, m), 5.172 (1.335H, s), 5.877 (0.403H, s), 6.733-6.827 (10H, m), 7.199-7.306 (2H, m), 8.456 (1.2H, m). Step B: 3-(2-amino-1H-imidazo[4,5-c]pyridin-7-yl)-N,N-bis(4-methoxybenzyl)-2-(1-(4-methoxybenzyl)-1H-tetrazol-5-yl)-6-(trifluoromethyl)benzenesulfonamide and 3-(2-amino-1H-imidazo[4,5-c]pyridin-7-yl)-N,N-bis(4-methoxybenzyl)-2-(2-(4-methoxybenzyl)-2H-tetrazol-5-yl)-6-(trifluoromethyl)benzenesulfonamide (1116) To a 10 mL sealed tube was added a solution of 3-(4,5-diaminopyridin-3-yl)-N,N-bis(4-methoxybenzyl)-2-(1-(4-methoxybenzyl)-1H-tetrazol-5-yl)-6-(trifluoromethyl)benzenesulfonamide and 3-(4,5-diaminopyridin-3-yl)-N,N-bis(4-methoxybenzyl)-2-(2-(4-methoxybenzyl)-2H-tetrazol-5-yl)-6-(trifluoromethyl)benzenesulfonamide (42 mg, 0.055 mmol) and di(1H-imidazol-1-yl)methanimine (8.90 mg, 0.055 mmol) in DMF (3 mL). The mixture was stirred for overnight at 120 C. The solvent was removed in vacuum and the residue was purified by column chromatography (ISCO RediSep Gold column 24 g) using 0-20% methanol/DCM as mobile phase to afford the title compounds. LC/MS (M+H)+: 786.68.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, Di(1H-imidazol-1-yl)methanimine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Merck Sharp & Dohme Corp.; Mandal, Mihir; Tang, Haifeng; Xiao, Li; Su, Jing; Li, Guoqing; Yang, Shu-Wei; Pan, Weidong; Tang, Haiqun; DeJesus, Reynalda; Hicks, Jacqueline; Lombardo, Matthew; Chu, Hong; Hagmann, William; Pasternak, Alex; Gu, Xin; Jiang, Jinlong; Dong, Shuzhi; Ding, Fa-Xiang; London, Clare; Biswas, Dipshikha; Young, Katherine; Hunter, David N.; Zhao, Zhiqiang; Yang, Dexi; (405 pag.)US2016/333021; (2016); A1;,
Imidazole – Wikipedia,
Imidazole | C3H4N2 – PubChem