Extended knowledge of 4-Methyl-5-nitro-1H-imidazole

According to the analysis of related databases, 14003-66-8, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 14003-66-8 as follows. Formula: C4H5N3O2

EXAMPLE 4 127 parts of 4-methyl-5-nitroimidazole is heated under reflux with 350 parts of formic acid and 126 parts of dimethyl sulfate for 4 hours. The formic acid is distilled off in vacuo and the residue is dissolved in 500 parts of water and adjusted to pH 1.8 with aqueous ammonia solution. The mixture is cooled to 5 C. and the unreacted 4-methyl-5-nitroimidazole is suction filtered. The filtrate is adjusted to pH 10 with aqueous ammonia solution and is continuously exhaustively extracted with ethyl acetate. The extract is evaporated in vacuo. The oily residue crystallizes on standing. 47 parts of unreacted 4-methyl-5-nitroimidazole and 66 parts of 1,4-dimethyl-5-nitroimidazole melting at 45 C. are obtained; this is equivalent to a yield of 74% of theory.

According to the analysis of related databases, 14003-66-8, the application of this compound in the production field has become more and more popular.